por rafael baiano » Dom Dez 13, 2009 20:44
gente preciso resolver somente 3 questões do meu trabalho mas nao consigo de jeito manera..
resolver as equaçoes exponenciais.
a) 4(elevado a x)=0,05
b)(0,16) (elevado a X)= raiz cubica de25/4
inequação
b)1/10 (elevado a 2x+1)<ou=1
sei que tenho que trandforma-los em potencias de mesma base mas ja tentei varias e num sai nada me ajudem nao quero repetir.
-
rafael baiano
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Dez 13, 2009 20:10
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhuma
- Andamento: cursando
por Elcioschin » Ter Dez 15, 2009 12:51
Transformar em potências de mesma base é impossível. Use logaritmos:
4^x = 0,05 ----> (2²)^x = 5*10^(-2) -----> 2^(2x) = (10/2)*10^(-2) ----> [2^(2x)]*2¹ = 10^(-1) ---->
2^(2x + 1) = 10^(-1) ----> log[2^(2x + 1)] = log[10^(-1)] ----> (2x + 1)*log2 = - 1 ----> log2 ~= 0,30103 ---->
(2x + 1)*0,30103 = - 1 ----> 2x + 1 = - 1/0,30103 ----> 2x = - 1 - 1/0,30103 ----> 2x = - 1,30103/0,30103 ---->
x = - 1,30103/0,600206 ----> x ~= - 2,16
faca vc os outros.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequação Exponencial
por Karina » Sáb Mai 29, 2010 17:31
- 3 Respostas
- 2218 Exibições
- Última mensagem por Douglasm

Seg Mai 31, 2010 15:47
Álgebra Elementar
-
- Inequação exponencial
por Aliocha Karamazov » Seg Abr 11, 2011 22:46
- 2 Respostas
- 1552 Exibições
- Última mensagem por Aliocha Karamazov

Seg Abr 11, 2011 23:11
Funções
-
- [inequação exponencial]
por paola-carneiro » Sáb Abr 07, 2012 18:03
- 2 Respostas
- 4796 Exibições
- Última mensagem por paola-carneiro

Sáb Abr 07, 2012 18:54
Funções
-
- Inequação Exponencial
por Rafael16 » Qui Jul 26, 2012 21:22
- 1 Respostas
- 1099 Exibições
- Última mensagem por DanielFerreira

Qui Jul 26, 2012 21:32
Funções
-
- inequação exponencial
por Danilo » Sáb Ago 25, 2012 01:34
- 2 Respostas
- 1479 Exibições
- Última mensagem por Danilo

Sáb Ago 25, 2012 01:50
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.