por Ruan Petterson » Sex Nov 15, 2013 19:25
Primeiro, para simplificar, determinei

.
Segundo, determinei

.
Bom, por via de regra

, pois não existe raiz quadrada de números negativos em

.
Portanto

. Mas quando isso ocorre?
Vi no Wolfram|Alpha que seria quando

e, portanto, este seria o dominío de

.
Mas como chega-se nesse resultado? O que é o

?
Obrigado desde já!
-
Ruan Petterson
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Nov 15, 2013 19:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharela em Ciência e Tecnologia
- Andamento: cursando
por e8group » Sex Nov 15, 2013 23:56
Lembre-se que a função seno é periódica de período fundamental

para qualquer número inteiro

.A seguir utilizaremos esta propriedade para determinar o conjunto dos pontos

para os quais a função

é maior ou igual a zero .
Observe inicialmente que

para

.Como ,

(k inteiro ) e

implica

. Variando

em

obteremos uma sequência de intervalos
![... I_{-1} = [-2\pi, - \pi] , I_{0} = [0,\pi] , I_{1} = [2\pi,3\pi], .... ... I_{-1} = [-2\pi, - \pi] , I_{0} = [0,\pi] , I_{1} = [2\pi,3\pi], ....](/latexrender/pictures/80e8930ab5d6ec35fa1e513b2621e06a.png)
. Assim , concluímos
![sin\left(\bigcup_{\lambda \in \mathbb{Z}} I_\lambda \right) = [0,1] sin\left(\bigcup_{\lambda \in \mathbb{Z}} I_\lambda \right) = [0,1]](/latexrender/pictures/bf2961e5681853043bd279f9f3d9c08d.png)
.
No exercício dado , basta então tomar

, daí segue que

.
Portanto o domínio da função dada será
![\{\frac{\pi +2 k \pi}{2} \geq x \geq k \pi : k\in \mathbb{Z} \} = \bigcup_{k\in \mathbb{Z} } \left[\frac{\pi +2 k \pi}{2} , k\pi\right] \{\frac{\pi +2 k \pi}{2} \geq x \geq k \pi : k\in \mathbb{Z} \} = \bigcup_{k\in \mathbb{Z} } \left[\frac{\pi +2 k \pi}{2} , k\pi\right]](/latexrender/pictures/d7f1e20365fb303000d82c98f7333616.png)
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [descobrir valor para domínio] Domínio da função
por Zebra-LNX » Sáb Jun 16, 2012 12:26
- 1 Respostas
- 3120 Exibições
- Última mensagem por MarceloFantini

Ter Jun 19, 2012 22:18
Funções
-
- [Domínio] Determinar domínio a partir da função
por +danile10 » Qui Fev 07, 2013 21:33
- 1 Respostas
- 2759 Exibições
- Última mensagem por e8group

Qui Fev 07, 2013 22:38
Funções
-
- [Domínio da Função] A função abaixo é definida f(x)=x²-3x
por Tiago Neto » Qui Mai 30, 2013 20:58
- 0 Respostas
- 1671 Exibições
- Última mensagem por Tiago Neto

Qui Mai 30, 2013 20:58
Funções
-
- Integral de 6/sqrt(1-x^2) no intervalo [1/2 , sqrt(3)/2]
por Costa43 » Sex Nov 01, 2013 17:29
- 2 Respostas
- 1524 Exibições
- Última mensagem por Costa43

Dom Nov 03, 2013 13:12
Cálculo: Limites, Derivadas e Integrais
-
- dominio da funçao
por Thassya » Sex Mai 29, 2009 11:26
- 4 Respostas
- 4997 Exibições
- Última mensagem por Marcampucio

Dom Mai 31, 2009 18:58
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.