• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor mahhfe » Sex Nov 13, 2009 12:10

Estou com dificuldades de resolver essa questão que "aparenta" não ser dificil

UECE 2001.2
Seja N = { 1, 2, 3, 4, ...) e f : A ---> N a função definidade por f(x) = \frac{x + 20}{x} . Se A\subset N é o dominio mais amplo possível para f, a soma dos 5 menores elementos de A será:
a) 15
b) 18
c) 20
d) 22



Ps. é o meu primeiro post, estou tendo um pouco de dificuldades com os codigos, se algo estiver fora das regras ou codigos errados é só me falarem.
mahhfe
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 13, 2009 11:25
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor Molina » Sex Nov 13, 2009 13:43

mahhfe escreveu:Estou com dificuldades de resolver essa questão que "aparenta" não ser dificil

UECE 2001.2
Seja N = { 1, 2, 3, 4, ...) e f : A ---> N a função definidade por f(x) = \frac{x + 20}{x} . Se A\subset N é o dominio mais amplo possível para f, a soma dos 5 menores elementos de A será:
a) 15
b) 18
c) 20
d) 22



Ps. é o meu primeiro post, estou tendo um pouco de dificuldades com os codigos, se algo estiver fora das regras ou codigos errados é só me falarem.

Primeiramente bem-vindo ao fórum! Faça bom uso...

Vamos lá quanto a questão:

Temos a seguinte função f(x) = \frac{x + 20}{x} e queremos encontrar valores que quando substituirmos x em \frac{x + 20}{x} encontremos um número pertencente a N, ou seja, um número natural 1, 2, 3, ...

Não é difícil porque iremos fazer a seguinte "jogada"... Ao invés de usar \frac{x + 20}{x} podemos escrever \frac{x}{x}+\frac{20}{x} e por consequencia 1+\frac{20}{x}.

Ou seja, 1+\frac{20}{x}=N onde N é um número inteiro. Para isso dar inteiro a fração tem que ser redutível, sendo assim temos que encontrar os x em que vamos dividir 20 e encontrar um número inteiro. Em outras palavras, quais são os 5 primeiros números que 20 é divisível?

Tente resolver agora.
A resposta certa é a letra d)
Qualquer dúvida informe aqui.
Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função

Mensagempor mahhfe » Sex Nov 13, 2009 19:06

Oi Molina, poxa, obrigada!
Consegui! Fiz de duas maneiras inimagináveis e nunca pensei nessa. Sabe com é, estou adentrando no mundo da matemática e aos poucos vou pegando o jeito. O meu problema maior é com a interpretaçao do problema, mas creio que esse é o maior problema da maioria das pessoas.
mahhfe
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 13, 2009 11:25
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}