• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções

Funções

Mensagempor wsr » Sáb Out 31, 2009 19:28

Uma Função f, de R em R, tal que f(x+5)= f(x) , f(-x)= -f(x) , f(1/3)=1. Seja a=f(16/3), b=f(29/3) e c= f(12)+f(-7) , então podemos afirmar que a, b e c, são números reais tais que:

A) a=b+c
B) b=a+c
C) c= a-b
D) c= (a+b)/2
E) a=(b-c)/2

Essa foi uma questão de prova da UPE de 2009. Tentei resolver mas não consigo chegar a alternativa do gabarito que é a ¨D¨. A única conclusão que tiro é que f(16/3)=1 , pois f(1/3 + 5)= f(1/3) , logo , f(16/3)=f(1/3)=1 ; e Só, travei!
wsr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 31, 2009 18:07
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Telecomunicações
Andamento: formado

Re: Funções

Mensagempor thadeu » Dom Nov 01, 2009 14:29

a) \frac{16}{3}=\frac{15}{3}+\frac{1}{3}=5+\frac{1}{3}\,\Rightarrow\,f(x+5)=f(x)\,\Rightarrow\,f(\frac{1}{3}+5)=f(\frac{1}{3})\\\Rightarrow\,f(\frac{16}{3})=1\,\Rightarrow\,a=1

b) f(-\frac{1}{3}+5)=f(-\frac{1}{3})=-f(\frac{1}{3})=-1\,\Rightarrow\,f(-\frac{1}{3}+5)=f(\frac{14}{3})=-1\\f(\frac{14}{3}+5)=f(\frac{29}{3})\,\Rightarrow\,f(\frac{14}{3}+5)=f(\frac{14}{3})=-1\,\Rightarrow\,b=-1

c) f(-7)=f(-12+5)\,\Rightarrow\,f(-7)=f(-12)\,\Rightarrow\,f(-7)=-f(12)\\c=f(12)+f(-7)\,\Rightarrow\,c=f(12)-f(12)\,\Rightarrow\,c=0

Substituindo os valores a=1\,,\,\,\,b=-1\,\,\,e\,\,\,c=0:

A)\,\,1=-1+0\,\,\,(falso)\\B)\,\,-1=1+0\,\,\,(falso)\\C)\,\,0=1-(-1)\,\,\,(falso)\\D)\,\,0=\frac{1-1}{2}\,\,\,(verdadeiro)\\E)\,\,1=\frac{-1+0}{2}\,\,\,(falso)

Resposta D
Editado pela última vez por thadeu em Seg Nov 02, 2009 11:06, em um total de 1 vez.
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Funções

Mensagempor wsr » Dom Nov 01, 2009 14:33

Muito obrigado Thadeu!!!Valeu mesmo!
wsr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 31, 2009 18:07
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Telecomunicações
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59