• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função]UFC

[Função]UFC

Mensagempor Giudav » Qua Mai 01, 2013 23:42

Giudav
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Fev 21, 2012 23:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função]UFC

Mensagempor e8group » Qui Mai 02, 2013 01:16

Não conseguir visualizar sua solução ,há problemas com o LaTex .

Para provar a equivalência f(S\cup T )  = f(S) \cup f(T) ,acredito que podemos proceder da seguinte forma .

Solução :

Para cada x \in S\cup T existe um único y \in f(S\cup T) tal que y = f(x) , ou seja , para cada x\in S ou x\in T , \exists ! y \in f(S) ou y \in  f(T)  : y = f(x) e portanto , para cada x \in S\cup T , \exists !  y \in f(S)\cup f(T)  : y = f(x) .



OBS.: \exists ! = "Existe um único "
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Função]UFC

Mensagempor e8group » Qui Mai 02, 2013 01:26

OU então ...

y \in f(S\cup T)  \iff  \exists  x \in S\cup T   \mid   y = f(x)  , \iff   x \in S \  \text{ou} \ x \in T \mid  y=f(x) \in f(S)\  \text{ou} \ y= f(x) \in f(T) \iff y=f(x) \in  f(S)\cup f(T) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?