por eri » Sex Mar 15, 2013 23:31
Um determinado servidor utilizado no gerenciamento de um sistema foi monitorado
quanto à utilização de sua capacidade de processamento. Após um tempo de análise,
verificou-se que a relação entre a quantidade Q de usuários (em mil pessoas) conectadas
ao sistema se relacionava com o tempo T (em horas) por meio de uma função
de segundo grau da forma Q = – T 2 + 8 ? T .
Com base nessa informação:
a) Descreva que tipo de parábola representa a relação entre usuários e tempo. Justifique.
b) Supondo que o servidor entre em operação às 8 horas da manhã, em que momento
ocorrerá o maior pico de usuários? Em que tempo o número de usuários voltará
a ficar igual a zero?
-
eri
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mar 15, 2013 23:27
- Formação Escolar: GRADUAÇÃO
- Área/Curso: tecnologo gestão publica
- Andamento: cursando
por XILVANA » Qua Abr 10, 2013 13:20
resposta
a)a parábola é decrescente porque o termo "a" da função é negativo.
b) sendo 8 horas da manhã=> T=0
9 horas da manhã=> T=1
10 horas T = 2
11 horas T = 3
O maior pico ocorrerá as 12 horas (t=4)
O número de usuários será zero quando Q=0, logo:
-T^2+8t=0
T^2-8t=0
t(t-8)=0
t=0 ou t=8
Portanto será as 8 horas da manhã e as 16 horas que o número de usuários será zero.
-
XILVANA
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 10, 2013 12:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em artes
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Fracionária do Segundo Grau Ajuda Urgente
por karenblond » Ter Ago 18, 2015 11:17
- 6 Respostas
- 7823 Exibições
- Última mensagem por nakagumahissao

Ter Ago 18, 2015 18:17
Equações
-
- [Função de primeiro grau] Nem sei por onde começar '-'
por Cosma » Qui Abr 11, 2013 20:54
- 4 Respostas
- 2192 Exibições
- Última mensagem por Russman

Sáb Abr 13, 2013 14:50
Funções
-
- equações do segundo grau - como fazer
por Ariel » Seg Nov 09, 2015 21:52
- 6 Respostas
- 10627 Exibições
- Última mensagem por Ariel

Ter Nov 10, 2015 19:08
Álgebra Elementar
-
- Função do segundo grau
por gustavoluiss » Dom Nov 28, 2010 17:27
- 7 Respostas
- 5128 Exibições
- Última mensagem por alexandre32100

Qua Dez 01, 2010 15:39
Álgebra Elementar
-
- Função de segundo grau
por anfran1 » Qua Ago 15, 2012 16:23
- 6 Respostas
- 3283 Exibições
- Última mensagem por e8group

Qua Ago 15, 2012 20:39
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.