• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor leandropressato » Sex Dez 28, 2012 09:44

Bom dia,

Tenho a seguinte função:

(f(x)-f(p)) / (x-p) .

(x diferente p) sendo f(x) = 1/x² e p= 3.

è simples substituição de formúla?

também não estou conseguindo desenvolver, se alguém puder me auxiliar nesse raciocinio.
leandropressato
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Dez 26, 2012 10:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Bach. interd. ciencia e economia
Andamento: cursando

Re: Função

Mensagempor marinalcd » Sex Dez 28, 2012 18:27

Primeiro , aconselho que utilize o editor de fórmulas, pois fica mais fácil de entendermos o exercício.

Bom, não entendi exatamente o que é proposto, seria melhor ter o enunciado junto, mas se for para fazer a substituição, basta você calcular os dados necessários a partir do que você já tem :
f(x)= \frac{1}{x^2} e p = 3.

Tem como calcular facilmente o que precisa e depois é só substituir.
Att.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Função

Mensagempor Russman » Sex Dez 28, 2012 21:23

Você precisa obter uma nova função, chamarei de g(x), a partir de uma f(x) = x^{-2} de forma que

g(x) =\frac{f(x) - f(p)}{x-p} , p=3.

Como f(x) = x^{-2}, então

g(x) =\frac{x^{-2} - p^{-2} }{x-p} = \frac{x^{-2} - p^{-2} }{x-p} = \frac{\frac{1}{x^2}-\frac{1}{p^2}}{(x-p)} = \frac{p^2 - x^2}{p^2x^2(x-p)} .

Simplificando,

g(x)=\frac{(p-x)(p+x)}{p^2x^2(x-p)} = -\frac{(x+p)}{p^2x^2} = -\frac{1}{p^2x} - \frac{1}{px^2}== -\frac{f(p)}{x} - \frac{f(x)}{p}= -\frac{1}{px}(pf(p)+xf(x))

Agora basta substituir p por 3...
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Função

Mensagempor Russman » Sex Dez 28, 2012 21:24

.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}