• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivar a função

derivar a função

Mensagempor SILMARAKNETSCH » Qua Nov 14, 2012 18:21

vejam quanto importantes foram os colegas para meus estudos, comecei sem saber aplicar sequer a entrada da formula e voces me ensinaram a fazer pelo editor de fórmulas levei alguns dias mas com a benevolência dos colegas me deram um conhecimento pro resto da minha vida, ainda continuo apanhando com limites, derivadas mas faltam tres modelos para aprender e enviei uma matéria ao meu professor de como eu estava aprendendo citando o site ele aceitou minha lição de casa feita num sulfite a caneta por não saber usar os programas de formatação e mesmo assim eu dizendo que vcs estavam me ajudando que não resolvi os problemas sózinha deu-me as notas da tarefa que se chama portifólio é para ensino EAD a distância pois sou deficiente física e disse que assim mesmo me daria a nota por estar procurando aprender e agradeço a todos os voluntários porque vcs é que me deram a chance de tirar nota e aprender porque terei prova presencial e sem aprender nada farei. precisava agradecer a todos aqui e dizer que tenho mais tres dias apenas para estudar.

f (x) = \frac{x+5}{x-5}
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: derivar a função

Mensagempor MarceloFantini » Qua Nov 14, 2012 19:24

Silmara, para derivar esta função perceber que temos um quociente de funções, ou seja, uma razão (divisão) de duas funções. Para colocar em termos explícitos, as funções são g(x) = x+5 e h(x) = x-5. Então temos que f(x) = \frac{x+5}{x-5} = \frac{g(x)}{h(x)}.

Pelas regras de derivação, sabemos que a derivada do quociente é \left( \frac{g(x)}{h(x)} \right)' = \frac{h(x) g'(x) - g(x) h'(x)}{(h(x))^2}.

Aplicando na função em questão, segue que

f'(x) = \left( \frac{g(x)}{h(x)} \right)' = \frac{h(x) g'(x) - g(x) h'(x)}{(h(x))^2}

= \frac{(x-5)(1) - (x+5)(1)}{(x-5)^2} = \frac{-10}{(x-5)^2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: derivar a função

Mensagempor SILMARAKNETSCH » Qua Nov 14, 2012 21:52

agradeço o etapa a etapa agora vou treinar mudando numeros assim sei que praticando um pouco ajuda a aprender dai parto para entender de vez a formula e conceitos que estes jamais deixarão de me ajudar a fazer outros exercícios. abraço. silmara.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: derivar a função

Mensagempor SILMARAKNETSCH » Qua Nov 14, 2012 21:57

Marcelo seus alunos gostarão muito de aprender com você esse etapa etapa parece num olhar um monstrinho mas seguindo brincando e entendendo com numeros diferentes vamos entendendo de onde e como achar cada coisa e concluir.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 19 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D