• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda Potência

Ajuda Potência

Mensagempor andrelpti » Ter Set 07, 2010 20:37

Pessoal boa noite !!!


Poderiam me ajudar a simplificar esta potência abaixo.

(4^3.6^(-4) )^(-3)/(4^(-2).6^(-5) )^(-1) .(1/24)^(-2)

Muito Obrigado !!
andrelpti
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Set 05, 2010 14:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Redes
Andamento: cursando

Re: Ajuda Potência

Mensagempor MarceloFantini » Qua Set 08, 2010 00:17

Não consigo entender sua expressão. Poderia tentar reescrever usando LaTeX? Obrigado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda Potência

Mensagempor alexandre32100 » Qua Set 08, 2010 00:25

Não entendi bem a expressão, por exemplo ali no ^(-3) não sei se o seguinte é ou não parte do expoente etc..
Por favor, usa o \LaTeX, fica mais fácil de entender.

Todo caso, acho que é isso:
\dfrac{(4^3\times6^{-4})^{-3}}{(4^{-2}\times6^{-5})^{-1}\times (\frac{1}{24})^{-2}}
Vou desenvolver o dividendo e o divisor da fração maior separadamente e depois calcular o resultado final para facilitar a resolução.
I.
\left ( \dfrac{4^3}{6^4}\right ) ^{-3}=\left ( \dfrac{6^4}{4^3}\right ) ^{3}=\dfrac{6^{12}}{4^{9}}=\dfrac{2^{12}\times3^{12}}{2^{18}} (vou por tudo como potência de 2 e de 3 para facilitar a simplificação depois)
II.
(4^{-2}\times6^{-5})^{-1}\times \left(\dfrac{1}{24}\right)^{-2}=4^2\times6^5\times24^2=2^{2\cdot2}\times2^5\times3^5\times2^{3\cdot2}\times3^2= 2^{15}\times3^{7}
Dividindo I por II (como está representado acima):
\dfrac{2^{12}\times3^{12}}{2^{15+18}\times3^{7}}= (simplificando...)
2^{-21}\times3^{5}=\dfrac{3^5}{2^{21}}

Não sei se errei alguma passagem (há um boa probabilidade disto ter acontecido), mas, mesmo que eu tenho entendido errado a expressão que você propôs, é essa a "essência" do cálculo, é só aplicar as propriedades.
alexandre32100
 

Re: Ajuda Potência

Mensagempor andrelpti » Qua Set 08, 2010 22:15

Alexandre boa noite !!!


Obrigado pele resposta agradeço sua atenção, não sabia usar o editor, a formula é assim.

\frac{(4^3.6^{-4})^{-3}}{(4^{-2}.6^{-5})^{-1}}.\left(\frac{1}{24}\right)^{-2}

Desculpe o transtorno.

Obrigado
andrelpti
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Set 05, 2010 14:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Redes
Andamento: cursando

Re: Ajuda Potência

Mensagempor MarceloFantini » Qui Set 09, 2010 14:32

\frac { ( 4^3 \cdot 6^{-4} )^{-3}  } { ( 4^{-2} \cdot 6^{-5} )^{-1} } \cdot \left( \frac { 1 } { 24 } \right)^{-2} = \frac { ( 4^{-9} \cdot 6^{12} )  } { ( 4^{2} \cdot 6^{5} ) } \cdot ( 4^{-1} \cdot 6^{-1} )^{-2} = ( 4^{-11} \cdot 6^{7} ) \cdot ( 4^2 \cdot 6^2 ) = 4^{-9} \cdot 6^9 = \left( \frac { 6 } { 4 } \right)^9 = \left( \frac { 3 } { 2 } \right)^9
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?