• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Exponencial

Equação Exponencial

Mensagempor JoaoGabriel » Sáb Set 04, 2010 12:01

Resolver em R uma equação exponencial, eu gostaria de saber a maneira correta de igualar bases que são múltiplos entre si.

Ex.1) 25^x - 23.5^x = 50

Ex.2)100^x - 1 = 9(10^x +1)
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando

Re: Equação Exponencial

Mensagempor Douglasm » Sáb Set 04, 2010 13:17

Vamos lá João:

1) 25^x - 23.5^x = 50 \;\therefore

5^{2x} - 23.5^x = 5^{2}.2 \;\therefore

5^x.(5^x - 23) =  5^2 . 2 \;\therefore

x = 2

2) 100^x - 1 = 9.(10^x + 1) \;\therefore

10^{2x} - 1 = 9.(10^x+1) \;\therefore

(10^x + 1).(10^x - 1) = 9.(10^x + 1) \;\therefore

10^x - 1 = 9 \;\therefore

x = 1
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}