• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função com Tangente

Função com Tangente

Mensagempor rafacosme » Qua Jun 16, 2010 15:25

Valores de x para os quais o gráfico da função f(x)= {x}^{4} -2{x}^{2} +2 tem tangentes horizontais são:

0, -1 e 1, alguem sabe dizer pq?
rafacosme
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Jun 16, 2010 15:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação ( CComp_)
Andamento: cursando

Re: Função com Tangente

Mensagempor Lucio Carvalho » Qua Jun 16, 2010 15:54

Olá rafacosme,
Primeiramente achamos a função derivada de f(x). Teremos:

f'(x)= 4{x}^{3}-4x

Devemos lembrar que a primeira derivada de uma função num ponto é igual ao declive da recta tangente ao gráfico da função nesse ponto.
De acordo com o exercício, queremos descobrir os valores de x para os quais a primeira derivada é igual a zero. Então:

4{x}^{3}-4x=0

4x({x}^{2}-1)=0

4x(x+1)(x-1)=0

Logo,
x = 0 ou x = -1 ou x = 1

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Função com Tangente

Mensagempor rafacosme » Qua Jun 16, 2010 15:59

Obrigado Lucio!
Estou a vespera de fazer uma prova de calculo!
Valeu, entendi certinho agora
rafacosme
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Jun 16, 2010 15:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação ( CComp_)
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?