• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função com Tangente

Função com Tangente

Mensagempor rafacosme » Qua Jun 16, 2010 15:25

Valores de x para os quais o gráfico da função f(x)= {x}^{4} -2{x}^{2} +2 tem tangentes horizontais são:

0, -1 e 1, alguem sabe dizer pq?
rafacosme
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Jun 16, 2010 15:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação ( CComp_)
Andamento: cursando

Re: Função com Tangente

Mensagempor Lucio Carvalho » Qua Jun 16, 2010 15:54

Olá rafacosme,
Primeiramente achamos a função derivada de f(x). Teremos:

f'(x)= 4{x}^{3}-4x

Devemos lembrar que a primeira derivada de uma função num ponto é igual ao declive da recta tangente ao gráfico da função nesse ponto.
De acordo com o exercício, queremos descobrir os valores de x para os quais a primeira derivada é igual a zero. Então:

4{x}^{3}-4x=0

4x({x}^{2}-1)=0

4x(x+1)(x-1)=0

Logo,
x = 0 ou x = -1 ou x = 1

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Função com Tangente

Mensagempor rafacosme » Qua Jun 16, 2010 15:59

Obrigado Lucio!
Estou a vespera de fazer uma prova de calculo!
Valeu, entendi certinho agora
rafacosme
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Jun 16, 2010 15:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação ( CComp_)
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59