• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função lagrangeana

função lagrangeana

Mensagempor jmario » Sex Mai 21, 2010 09:23

Alguém pode me dizer se a resolução dessa função utilidade está correta

U(x,y)={x}^{\alpha}{y}^{1-\alpha}
derivando
\alpha{x}^{\alpha-1}{y}^{1-\alpha}
(1-\alpha){x}^{\alpha}{y}^{-\alpha}

L={x}^{\alpha}{y}^{1-\alpha}-\lambda(xp+yq=m)

\alpha{x}^{\alpha-1}{y}^{1-\alpha}=\lambda\rightarrow\frac{\lambda=\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{p}
\(1-alpha){x}^{\alpha}{y}^{-\alpha}=\lambda\rightarrow\frac{\lambda=\((1-\alpha){x}^{\alpha}{y}^{-\alpha}}{q}

restrição orçamentária
xp+yq=m

\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{p} = \frac{(1-\alpha){x}^{\alpha}{y}^{-\alpha}}{q}
\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{{x}^{\alpha}{y}^{-\alpha}} = \frac{(1-\alpha)p}q}\rightarrow\alpha{x}^{-1}yq=(1-\alpha)p
\alpha\frac{1}{x}yq=(1-\alpha)p\rightarrow\frac{\alpha}{x}yq=(1-\alpha)
yq=\frac{(1-\alpha)}{\alpha}px
xp+\frac{1-\alpha}{\alpha}px=m
px\left(1+\frac{1-\alpha}{\alpha} \right)=m
px\left(\frac{\alpha+1-\alpha}{\alpha} \right)=m
px\frac{1}{\alpha}=m\rightarrow
x=\alpha\frac{m}{p}

como qy=\frac{1-\alpha}{\alpha}px
qy=\frac{1-\alpha}{\alpha}p\alpha\frac{m}{p}=y(1-\alpha)\frac{m}{q}
\lambda=\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}p}
\lambda=\frac{\frac{{\alpha\alpha}^{\alpha-1}{m}^{\alpha-1}}{{p}^{\alpha-1}}.\frac{{(1-\alpha)}^{1-\alpha}{m}^{1-\alpha}}{{q}^{1-\alpha}}}{p}
\lambda=\left(\frac{\alpha}{p} \right)^{\alpha}\left(\frac{1-\alpha}{q} \right)^{1-\alpha}

Será que isso?
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}