• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função lagrangeana

função lagrangeana

Mensagempor jmario » Sex Mai 21, 2010 09:23

Alguém pode me dizer se a resolução dessa função utilidade está correta

U(x,y)={x}^{\alpha}{y}^{1-\alpha}
derivando
\alpha{x}^{\alpha-1}{y}^{1-\alpha}
(1-\alpha){x}^{\alpha}{y}^{-\alpha}

L={x}^{\alpha}{y}^{1-\alpha}-\lambda(xp+yq=m)

\alpha{x}^{\alpha-1}{y}^{1-\alpha}=\lambda\rightarrow\frac{\lambda=\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{p}
\(1-alpha){x}^{\alpha}{y}^{-\alpha}=\lambda\rightarrow\frac{\lambda=\((1-\alpha){x}^{\alpha}{y}^{-\alpha}}{q}

restrição orçamentária
xp+yq=m

\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{p} = \frac{(1-\alpha){x}^{\alpha}{y}^{-\alpha}}{q}
\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{{x}^{\alpha}{y}^{-\alpha}} = \frac{(1-\alpha)p}q}\rightarrow\alpha{x}^{-1}yq=(1-\alpha)p
\alpha\frac{1}{x}yq=(1-\alpha)p\rightarrow\frac{\alpha}{x}yq=(1-\alpha)
yq=\frac{(1-\alpha)}{\alpha}px
xp+\frac{1-\alpha}{\alpha}px=m
px\left(1+\frac{1-\alpha}{\alpha} \right)=m
px\left(\frac{\alpha+1-\alpha}{\alpha} \right)=m
px\frac{1}{\alpha}=m\rightarrow
x=\alpha\frac{m}{p}

como qy=\frac{1-\alpha}{\alpha}px
qy=\frac{1-\alpha}{\alpha}p\alpha\frac{m}{p}=y(1-\alpha)\frac{m}{q}
\lambda=\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}p}
\lambda=\frac{\frac{{\alpha\alpha}^{\alpha-1}{m}^{\alpha-1}}{{p}^{\alpha-1}}.\frac{{(1-\alpha)}^{1-\alpha}{m}^{1-\alpha}}{{q}^{1-\alpha}}}{p}
\lambda=\left(\frac{\alpha}{p} \right)^{\alpha}\left(\frac{1-\alpha}{q} \right)^{1-\alpha}

Será que isso?
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: