por jmario » Ter Mai 18, 2010 09:13
Dado o seguinte lambda

A restrição orçamentária é dada por

Substituindo a função de demanda de

e a função demanda

Substituindo essas duas funções demandas no lambda abaixo

, fica assim:
![\lambda=\frac{\alpha\left(\frac{\alpha.m}{p}\right)^{\alpha-1}\left[\left(1-\alpha \right)\frac{m}{q} \right]^{1-\alpha}}{p} \lambda=\frac{\alpha\left(\frac{\alpha.m}{p}\right)^{\alpha-1}\left[\left(1-\alpha \right)\frac{m}{q} \right]^{1-\alpha}}{p}](/latexrender/pictures/4cbff281ef10718ff4083380edadea0a.png)
O resultado é esse

O problema é que eu não sei como se chega nessa solução.
Grato
José Mario
-
jmario
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Qui Abr 15, 2010 12:23
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: economia
- Andamento: formado
por MarceloFantini » Ter Mai 18, 2010 19:59
Continuando após a sua última linha, vou aplicar as potências:

No m, some as potências

, no

também:

, e finalmente no p:

, resultando em:

Agrupando:

Qualquer dúvida comente.
P.S.: Cacete, meu LaTeX por algum motivo fica pequeno. -_-
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- isolamento de função lagrangeana
por jmario » Qui Mai 13, 2010 08:41
- 7 Respostas
- 3745 Exibições
- Última mensagem por MarceloFantini

Ter Mai 18, 2010 19:33
Funções
-
- isolamento de equação
por jmario » Seg Mai 10, 2010 12:39
- 6 Respostas
- 2874 Exibições
- Última mensagem por jmario

Ter Mai 11, 2010 16:03
Funções
-
- isolamento de variável
por jmario » Sex Jun 04, 2010 08:39
- 3 Respostas
- 3563 Exibições
- Última mensagem por Mathmatematica

Sáb Jun 05, 2010 13:02
Álgebra Elementar
-
- Função real definida pela soma de uma função par c/uma ímpar
por Taah » Sáb Mar 27, 2010 15:33
- 3 Respostas
- 5195 Exibições
- Última mensagem por Taah

Dom Mar 28, 2010 13:21
Funções
-
- [plano tangente a função de duas variaveis dada por função]
por isaac naruto » Qui Dez 31, 2015 16:35
- 0 Respostas
- 4328 Exibições
- Última mensagem por isaac naruto

Qui Dez 31, 2015 16:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.