• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajude, por favor, com essa questão de função.

Me ajude, por favor, com essa questão de função.

Mensagempor matemarcos » Qui Out 18, 2018 18:19

Fernando, dono de uma fábrica de reguladores de oxigênio, tem um custo de R$ 150,00 por
unidade produzida. Analisando o mercado, ele percebeu que, se vendesse sua mercadoria
por x reais, conseguiria colocar no mercado 250 - x unidades desse produto, com 0 < x < 250.
Considerando lucro como a diferença entre o valor arrecadado com as vendas e o custo
para fabricação do produto, para que Fernando obtenha lucro máximo, o valor de venda do
regulador de oxigênio deverá ser de
A) R$ 50,00.
B) R$ 100,00.
C) R$ 150,00.
D) R$ 200,00

Buguei completamente.
matemarcos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jan 11, 2018 22:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Informática
Andamento: formado

Re: Me ajude, por favor, com essa questão de função.

Mensagempor Gebe » Qui Out 18, 2018 22:23

Primeiro é essencial organizar os dados fornecidos:
-> Custo de produção (unidade) = 150
-> Valor de venda (unidade) = x
-> Quantidade vendida = 250 - x

O lucro, como mencionado no enunciado é dado por:
-> Lucro = Valor arrecadado - Valor investido
Ou seja:
-> Lucro = (Quantidade vendida)*(Valor de venda un) - (Quantidade vendida)*(Custo de produção un)
-> Lucro = (250 - x)*(x) - (250 - x)*(150)
-> Lucro = 250x - 37500 - x² + 150x
-> Lucro = -x² + 400x - 37500

Como pode ser observado, o lucro é dado por uma função do 2°grau.
Queremos o lucro máximo e, em funções do 2°grau, este ponto tem coordenadas dadas por:
Ymax = -Delta/4a
Xmax = -b/2a

Teremos então:
Ymax = -10000/-4 = 2500
Xmax = -400/-2 = 200

Temos então lucro máximo no valor de R$2500 vendendo cada unidade a R$200. (LETRA D).
Obs.: Neste ponto foram vendidas 50 unidades.
Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Me ajude, por favor, com essa questão de função.

Mensagempor matemarcos » Sex Out 19, 2018 18:17

Obrigado senhor Gebe. Ainda estou muito longe do que eu almejo matematicamente. :lol:
matemarcos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jan 11, 2018 22:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Informática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?