• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valores máximos e mínimos

Valores máximos e mínimos

Mensagempor Vencill » Qua Dez 03, 2014 17:50

Encontrar os valores máximos e mínimo da seguinte função:

f(x) = ln 2 no intervalo \left[\frac{1}{2},2 \right]

A resposta eu sei é: maximo: f(2) = 2 - ln 2 e mínimo: f(1) = 1

Agradeço a ajuda é que estou com dúvidas em funções.
Vencill
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Nov 13, 2014 16:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Valores máximos e mínimos

Mensagempor lucas_carvalho » Qua Dez 03, 2014 19:20

Olá
A função f(x)=ln2 é uma função constante para todo x. Logo não tem valores máximos ou mínimos...
lucas_carvalho
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Dez 02, 2014 20:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia química
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.