• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funcoes

funcoes

Mensagempor ulisses123 » Sex Jun 20, 2014 15:51

cacule lim(n+7/n+5)^raiz quadrada de n
? ? ?
? ?
? ? ?
ulisses123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 20, 2014 14:48
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso tecnico em gestao
Andamento: formado

Re: funcoes

Mensagempor e8group » Sex Jun 20, 2014 18:32

Caro , ulisses123 .


Note que t + 7 difere apenas de t + 5 por uma constante real positiva 2 , a nossa intuição diz que lá no infinito às retas r_1 :  \beta (t) =   t + 7   ;  r_2 :  \alpha(t) = t + 5 que por sua vez são paralelas se " encontram no infinito e segue -se continuamente uma tangenciando a outra " .

Intuição \implies expectativa : \frac{ t + 7}{t+5} \approx 1 sempre que t \geq  M para algum M >> 0 dado .

E assim , a nossa intuição nos diz (\frac{ t + 7}{t+5} )^{1/t}  \approx 1 o que nos leva diz que o limite é 1 . E de fato a nossa expectativa se confirma .

Não é difícil tomar como verdade que

n+ 5   < (n+5) = 2 = n + 7 o que implica que \frac{n+7}{n+5}  > 1 ( já que n no contexto és natural (diferente de t , ex. acima) ) que possua vez implica

\left( \frac{n+7}{n+5} \right)^{1/n} >  1   (*) e ainda

\frac{n+7}{n+5} =   1 +  \frac{2}{n+5} \leq   \left(1 +   \frac{2}{n+5} \right)^n   (**) (já que \frac{n+7}{n+5}  > 1 ) de forma equivalente

\left( \frac{n+7}{n+5} \right)^{1/n}  \leq 1 +   \frac{2}{n+5}   (***) . Logo , formalmente obtemos ,

1 +  \frac{2}{n+5}    \geq  \left( \frac{n+7}{n+5} \right)^{1/n} \geq 1 .Quando n\to +\infty , o teorema do confronto valida nossa intuição .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}