• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função de 2° grau] conjunto img e dom

[Função de 2° grau] conjunto img e dom

Mensagempor joaovitors » Dom Mai 25, 2014 19:06

Considere a função f: R->R. F(x)= x²-2x-3

Questões
a) Calucule f(0); // respostas que eu obtive x=0, y=-3
b) Resolva a equação F(x)=0; // (3,1)
c) Obtenha as coordenadas, no plano cartesiano xOy, do vértice da parábola de equação y=F(x); /// travei a partir daqui
d)Esboce o Gráfico de f;
e) Dê o Conjunto imagem de F.
f) Dê o conjunto solução da inequação x²-2x-3 > 0
joaovitors
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 25, 2014 18:47
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.