por nessitahfl » Qui Abr 17, 2014 11:06
O exercício já possui resposta, porém não consegui entender o raciocínio. Alguém poderia explicar de outra forma? Obrigada.

-
nessitahfl
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Fev 12, 2014 20:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qui Abr 17, 2014 23:02
A função logarítmica é estritamente monótona , o que isto significa ?
R. Ela é estritamente crescente ou estritamente decrescente . O primeiro caso ocorre quando a base do logaritmo é maior que 1 e no segundo caso ocorre quando a base é maior que zero e menor que 1 .Veremos por que isto ocorre , antes porém , vamos revisar o que significa dizer função monótona .
Seja

uma função real .
i)

é decrescente se para todo

do domínio de

implica
ii)

é crescente se para todo

do domínio de

implica
Quando dizemos que a função é
estritamente crescente (ou decrescente ) , isto é para enfatizar a injetividade da função . Quando adicionamos a palavra
estritamente , a igualdade em (i) e (ii) nunca ocorrerá .
Fixe

e definiremos f por

.
Por definição ,

.
Se

. Daí se

implica

. Como

então ,

somente se

o que mostra que

. Acabamos de mostrar que

;logo

é estritamente crescente .
Está abstrato ??
Tome

, agora avalie

para valores positivos e negativos de

.
Se

, fazendo as mesmas contas vamos chegar em

.Como

então

se o expoente for negativo , daí

. Acabamos de mostrar que

; logo

é estritamente decrescente .
Exemplificar : Tome

,

e

.
Em resumo : A função logarítmica será estritamente crescente (respectivamente estritamente decrescente ) quando a base do logaritmo for um número maior que 1 (respecti. maior que zero e menor que 1 ) .
No exercício note que

e

. Pela teoria acima , devemos ter

.
Espero que fique claro .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Qui Abr 17, 2014 23:40
Não deixe a notação assustar. Simplificando as coisas, vamos tomar

. Daí, sabemos que o logaritmo de 5 nessa base é menor que o de 2 nessa mesma base. Essa é a informação do problema!

Agora, lembre-se da propriedade

. Assim, voltando a relação do exercício,


Quando que o logaritmo de algum número pode ser negativo? Aprende-se no colégio que isso somente acontece se o número ao qual se aplica o logaritmo é um número menor que 1. Porém,

. E agora? Será q não tem solução? A informação que está ausente no que se aprende no colégio é: o log pode ser negativo mesmo que o "logaritmando" seja maior que 1 desde que a BASE a qual ele está sendo calculado seja menor que 1. Está aí nosso detalhe.
Façamos um exercício rápido. Tomemos três reais
positivos 
e

. Por hipótese, tomemos

e

de modo que

. ( Você concorda com isso? Se não, é só testar: 1/10<1, 1/25<1, 1/2 <1,...). Agora, suponhamos que os números se relacionem da seguinte forma:

Mas, lembrando que

, então deve ser verdade que

.
Daí,

.
Então, esta claro que no exercício a base deve ser um número positivo e menor do que 1. De onde, segue a resolução.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por nessitahfl » Ter Abr 22, 2014 10:48
Obrigada pela resposta!
-
nessitahfl
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Fev 12, 2014 20:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função Logarítmica
por OtavioBonassi » Qui Jan 06, 2011 21:58
- 12 Respostas
- 7659 Exibições
- Última mensagem por OtavioBonassi

Sex Jan 07, 2011 23:42
Funções
-
- Função Logarítmica
por Carlos28 » Sex Mar 13, 2015 10:02
- 2 Respostas
- 2355 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:36
Logaritmos
-
- Função logarítmica
por zenildo » Qua Jul 15, 2015 12:26
- 1 Respostas
- 1972 Exibições
- Última mensagem por nakagumahissao

Qui Jul 16, 2015 14:37
Logaritmos
-
- Função Logarítmica - Urgente!
por Asustek27 » Dom Mar 14, 2010 19:24
- 2 Respostas
- 2573 Exibições
- Última mensagem por Asustek27

Seg Mar 15, 2010 15:25
Logaritmos
-
- (AMAN) função logaritmica
por natanskt » Sex Out 29, 2010 10:27
- 1 Respostas
- 1460 Exibições
- Última mensagem por DanielFerreira

Qui Nov 18, 2010 17:46
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.