• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio das funções

Domínio das funções

Mensagempor kellykcl » Qui Abr 10, 2014 20:18

Boa noite galera do fórum!
Mais uma vez precisando da ajuda de vocês!

Determine o domínio das seguintes funções:

1) f(x)=\frac{1}{\sqrt[]{9-{x}^{2}}}

9-{x}^{2}>0

-{x}^{2}+9=0

-{x}^{2}=-9

x=\sqrt[]{9}

x=\pm 3
Imagem

D(f)= \left|x\,\epsilon\,\Re\,\prime\,-3<x<3 \right|


2)f(x)= \frac{\sqrt[]{{x}^{2}+x}}{{x}^{2}+x}

Gabarito: D(f)=  \left| x\, \epsilon\, R / x< -1\, ou\, x>0\right|

Obs.:Não sei como resolver esta última questão, como o denominador tem que ser \neq 0, não estou sabendo esboçar o gráfico! *-)
Gostaria de saber se a primeira está correta (não tenho gabarito) e também como fazer a segunda incluindo o gráfico!

Desde já agradeço a colaboração!
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado

Re: Domínio das funções

Mensagempor Lucio Carvalho » Qui Abr 10, 2014 21:39

Ola kellykcl,
Segue, em anexo, uma possível ajuda.
Lúcio
Anexos
Domínio.png
Domínio.png (5.92 KiB) Exibido 1940 vezes
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Domínio das funções

Mensagempor kellykcl » Sex Abr 11, 2014 14:15

Lucio Carvalho escreveu:Ola kellykcl,
Segue, em anexo, uma possível ajuda.
Lúcio


Obrigada pela tentativa, mas minha dificuldade é que por serem duas inequações do 2º grau, encontramos 4 raízes ( 2 raízes de uma e duas da outra, embora com o mesmo resultado: 0 e -1) , difícil explicar onde estou errando pois estou completamente perdida neste exercício!
Você respondeu que no numerador, por ser uma raiz , a condição seria {x}^{2}+x > 0 , porém eu fiz {x}^{2}+x \geq 0 !
Se alguém pudesse me explicar passo a passo ajudaria muito!
Gostaria de saber tb se a primeira está correta! :y: :?:
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}