por ale03 » Sex Mar 21, 2014 14:37
Dada a função g(x) =

, qual o valor de f(2), sabendo que a função f satisfaz g(f(x))= 4x, para todo x de seu domínio?
a)-

b)-

c)-

d)-

e)-

f) n.d.r.

=4x
2f(x)+3=4x(3f(x)+4)
2f(x)+3=12xf(x)+16x
Até aqui está correto? Como desenvolvo essa equação?
-
ale03
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Mar 21, 2014 14:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas para Internet
- Andamento: formado
por Russman » Sex Mar 21, 2014 15:19
Esta correto, sim! Basta continuar.




Daí,

=

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por ale03 » Sáb Mar 22, 2014 01:14
Russman escreveu:Esta correto, sim! Basta continuar.




Daí,

=

.
Obrigada Russman. A ocorrência não usual de axf(x) me deixou confusa e, assim, não tive a ideia de colocar, no lado esquerdo, f(x) em evidência.
-
ale03
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Mar 21, 2014 14:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas para Internet
- Andamento: formado
por Russman » Sáb Mar 22, 2014 01:23
Bons estudos. (:
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Função composta]Achar o dominio de uma função composta
por lucasmath » Dom Abr 12, 2015 16:09
- 0 Respostas
- 2229 Exibições
- Última mensagem por lucasmath

Dom Abr 12, 2015 16:09
Funções
-
- [Calculo] Lei da função a partir do grafico
por deosdete » Dom Jun 10, 2012 16:29
- 4 Respostas
- 3304 Exibições
- Última mensagem por LuizAquino

Ter Jun 12, 2012 12:37
Cálculo: Limites, Derivadas e Integrais
-
- determinar uma função a partir de dados de um problema
por taiapf » Qua Mai 26, 2010 15:10
- 0 Respostas
- 2281 Exibições
- Última mensagem por taiapf

Qua Mai 26, 2010 15:10
Funções
-
- FUNÇAO DE SEGUNDO GRAU A PARTIR DE RAIZES, ETC.
por aspirantestudante » Ter Set 14, 2010 15:58
- 11 Respostas
- 8349 Exibições
- Última mensagem por MarceloFantini

Seg Out 11, 2010 14:19
Funções
-
- Prova a partir da definição de limite para uma função 3 grau
por diegol » Qui Abr 24, 2014 12:16
- 3 Respostas
- 4442 Exibições
- Última mensagem por e8group

Sex Abr 25, 2014 00:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.