• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções - Inequações

Funções - Inequações

Mensagempor kellykcl » Seg Mar 17, 2014 20:42

Boa noite amigos do fórum!

1.Resolva a seguinte inequação: \frac{1}{x-3}\leq\frac{1}{2x+1}
Resolução:

\frac{1}{x-3}-\frac{1}{2x+1}\leq 0

Tirando o m.m.c dos denominadores:

\frac{2x+1-1(x-3)}{(x-3)(2x+1)}\leq 0\:\:\Rightarrow\frac{2x+1-x+3}{{2x}^{2}+x-6x-3}\leq 0\:\:\Rightarrow\frac{x+4}{{2x}^{2}-5x-3}\leq 0

Achando as Raízes:

(I)\,x+4=0\:\:\:\rightarrow x=-4

(II)\,{2x}^{2}-5x-3=0
\bigtriangleup=\left(-5\right)^{2}-4(2)(-3)
\bigtriangleup=49

>>>Bhaskara:
x=\frac{-(-5)\pm\sqrt{49}}{2.2}

x'\,=\frac{5+7}{4}=\frac{12}{4}=3

x"\,=\frac{5-7}{4}=\frac{-2}{4}= \frac{-1}{2}

quadro de sinais.JPG
Estudo dos sinais
quadro de sinais.JPG (12.64 KiB) Exibido 2295 vezes


S=\{x\in\Re|x\leq-4 \:\:ou -\frac{1}{2}<x<3\}

Gostaria que algum amigo mais safo em matemática, verificasse se minha resolução está correta (principalmente o estudo de sinais)!
obs.: Não tenho o gabarito!
Desde já agradeço a colaboração!
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado

Re: Funções - Inequações

Mensagempor Russman » Seg Mar 17, 2014 21:24

Eu acho que você tenha feito um esforço tremendo pra algo simples.

Note que

\frac{1}{x-3}\leq \frac{1}{2x+1}\Rightarrow \frac{2x+1}{x-3}\leq 0.

Como sabido, a divisão de dois reais só será negativa se os mesmos tiverem sinais trocados. Assim, temos as possibilidades

(1) 2x+1\leq 0 ,\quad x-3> 0 ( aqui, x não pode ser 3)
(2) 2x+1 \geq  0 ,\quad x-3< 0

Daí, depois de resolver, retire o caso de x=-\frac{1}{2} pois é raiz do denominador da equação original como x=3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Funções - Inequações

Mensagempor ant_dii » Seg Mar 17, 2014 22:45

Bom, cuidado com a equivalência Russman. Tome x=-5 e verifique se vale a relação que você afirmou.
Na verdade ela poderia ter evitado somente o uso de Bháskara, uma vez que x-3 e 2x+1 já declaram os valores em que x se anula. Mas fez tudo correto.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Funções - Inequações

Mensagempor Russman » Seg Mar 17, 2014 22:53

ant_dii escreveu:Bom, cuidado com a equivalência Russman. Tome e verifique se vale a relação que você afirmou.


Era pra ser "\leq 1" na inequação! hahah Falta de atenção.

Desconsiderem aí.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Funções - Inequações

Mensagempor kellykcl » Ter Mar 18, 2014 10:11

Russman escreveu:Eu acho que você tenha feito um esforço tremendo pra algo simples.

Note que

\frac{1}{x-3}\leq \frac{1}{2x+1}\Rightarrow \frac{2x+1}{x-3}\leq 0.

Como sabido, a divisão de dois reais só será negativa se os mesmos tiverem sinais trocados. Assim, temos as possibilidades

(1) 2x+1\leq 0 ,\quad x-3> 0 ( aqui, x não pode ser 3)
(2) 2x+1 \geq  0 ,\quad x-3< 0

Daí, depois de resolver, retire o caso de x=-\frac{1}{2} pois é raiz do denominador da equação original como x=3.


Russman, você multiplicou em Cruz a inequação \frac{1}{x-3}\leq \frac{1}{2x+1} ?
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.