• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gráficos de funções.

Gráficos de funções.

Mensagempor Sobreira » Ter Fev 25, 2014 08:51

Prezados,

Estava estudando alguns gráficos de funções e estava com uma dificuldade.
Algumas funções possuem gráficos característicos, como a exponencial, segundo grau etc.
Minha dúvida é a seguinte:
As vezes vemos uma função e tentamos já imaginar o gráfico da função mas ele é diferente do imaginado pois a função, digamos, não é puramente exponencial, segundo grau etc.
Por exemplo:

f\left(x \right)={e}^{3x}+10
f\left(x \right)=ln\left({x}^{3} \right)

Nestes casos por exemplo, o gráfico foge do tradicional, tanto da exponencial quanto do logaritmo.
A minha dúvida é:
Se eu olhar para uma função e ela não for puramente exponencial, logaritmica, etc já não posso fazer aquela imagem do gráfico na minha cabeça??
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Gráficos de funções.

Mensagempor Bravim » Ter Fev 25, 2014 23:50

Eu acho que particulamente é importante pensar como se fosse cada uma separadamente. Desse jeito fica mais fácil de visualizar para mim, mas pode ser que talvez seja melhor pensar nessas funções através de algumas substituições como por exemplo:
f(x)=ln({x}^{3})
faz-se {x}^{3}=a e talvez fique mais fácil de ver a cara da função...
Derivando também é um bom jeito de verificar a "cara" da função, bem como calculando limites em alguns pontos.
Espero ter ajudado :)
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.