• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função] Domínio da função sqrt(sen(2x)) em R?

[Função] Domínio da função sqrt(sen(2x)) em R?

Mensagempor Ruan Petterson » Sex Nov 15, 2013 19:25

Primeiro, para simplificar, determinei g(x)=sen(2x).

Segundo, determinei f(x)=\sqrt{g(x)}.

Bom, por via de regra g(x)>0, pois não existe raiz quadrada de números negativos em \mathbb{R}.

Portanto sen(2x)>0. Mas quando isso ocorre?

Vi no Wolfram|Alpha que seria quando \{ \pi k \leq x \leq \frac{1}{2} ( 2 \pi k + \pi ) , k \in \mathbb{Z} \} e, portanto, este seria o dominío de f.

Mas como chega-se nesse resultado? O que é o k?

Obrigado desde já!
Ruan Petterson
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Nov 15, 2013 19:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharela em Ciência e Tecnologia
Andamento: cursando

Re: [Função] Domínio da função sqrt(sen(2x)) em R?

Mensagempor e8group » Sex Nov 15, 2013 23:56

Lembre-se que a função seno é periódica de período fundamental 2\pi

sin(\theta +2 k \pi ) = sin(\theta) para qualquer número inteiro k .A seguir utilizaremos esta propriedade para determinar o conjunto dos pontos \theta \in \mathbb{R} para os quais a função sin : \theta \mapsto sin(\theta) é maior ou igual a zero .

Observe inicialmente que sin(\theta) \geq 0 para \pi  \geq  \theta \geq 0 .Como ,

sin(\theta +2 k \pi ) = sin(\theta) (k inteiro ) e \pi  \geq  \theta \geq 0 implica

\pi  +2 k \pi  \geq  \theta + 2 k \pi  \geq 2 k \pi . Variando k em \mathbb{Z} obteremos uma sequência de intervalos ... I_{-1} = [-2\pi, - \pi] , I_{0} = [0,\pi] , I_{1} = [2\pi,3\pi], .... . Assim , concluímos

sin\left(\bigcup_{\lambda \in \mathbb{Z}}    I_\lambda   \right)  = [0,1] .

No exercício dado , basta então tomar \theta = 2x , daí segue que

\frac{\pi  +2 k \pi}{2}  \geq  x  \geq  k \pi .

Portanto o domínio da função dada será\{\frac{\pi  +2 k \pi}{2}  \geq  x  \geq  k \pi  :  k\in \mathbb{Z}  \}  = \bigcup_{k\in \mathbb{Z} } \left[\frac{\pi  +2 k \pi}{2}  ,   k\pi\right]
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?