por _fexsena » Sex Ago 30, 2013 19:36
Olá..
Pessoal, estou no primeiro período de Engenharia de Produção,e como estou parei de estudar há algum tempo, estou com muita dificuldade na matéria de cálculo I
Por isso estou pedindo ajuda para resolver os exercicios abaixo:
O lucro mensal total (em mil reais) para uma determinada companhia pode ser descrito pela função L = 1000[1/10] elevado a 0,8q -1
, em que q é a quantia (também em mil reais) gasta em estratégias de marketing e propaganda. Considerando essas informações:
a) Calcule a quantia gasta (q) quando L for igual a 1000 e interprete o resultado dentro do contexto do problema. Utilize uma abordagem baseada em uma função exponencial utilizando propriedades de exponenciação.
b) Calcule a quantia gasta (q) quando L for igual a 300 e interprete o resultado dentro do contexto do problema. Utilize uma abordagem baseada em uma função exponencial e utilizando propriedades de exponenciação
-
_fexsena
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Ago 30, 2013 19:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Função Exponencial] Problemas
por fff » Qua Jan 01, 2014 11:47
- 0 Respostas
- 575 Exibições
- Última mensagem por fff

Qua Jan 01, 2014 11:47
Funções
-
- [função logaritmica] Problemas
por fff » Dom Jan 05, 2014 17:33
- 0 Respostas
- 516 Exibições
- Última mensagem por fff

Dom Jan 05, 2014 17:33
Funções
-
- [Função logarítmica] 2 Problemas
por fff » Seg Jan 06, 2014 13:59
- 2 Respostas
- 1100 Exibições
- Última mensagem por fff

Ter Jan 07, 2014 11:44
Funções
-
- [Função exponencial] 2 Problemas
por Rafinha_84 » Qua Jan 08, 2014 19:19
- 0 Respostas
- 626 Exibições
- Última mensagem por Rafinha_84

Qua Jan 08, 2014 19:19
Funções
-
- [Função afim] Me ajudem com esses problemas.
por aluskt » Sáb Jun 09, 2012 17:11
- 1 Respostas
- 3229 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 09, 2012 19:26
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.