• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor mahhfe » Sex Nov 13, 2009 12:10

Estou com dificuldades de resolver essa questão que "aparenta" não ser dificil

UECE 2001.2
Seja N = { 1, 2, 3, 4, ...) e f : A ---> N a função definidade por f(x) = \frac{x + 20}{x} . Se A\subset N é o dominio mais amplo possível para f, a soma dos 5 menores elementos de A será:
a) 15
b) 18
c) 20
d) 22



Ps. é o meu primeiro post, estou tendo um pouco de dificuldades com os codigos, se algo estiver fora das regras ou codigos errados é só me falarem.
mahhfe
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 13, 2009 11:25
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor Molina » Sex Nov 13, 2009 13:43

mahhfe escreveu:Estou com dificuldades de resolver essa questão que "aparenta" não ser dificil

UECE 2001.2
Seja N = { 1, 2, 3, 4, ...) e f : A ---> N a função definidade por f(x) = \frac{x + 20}{x} . Se A\subset N é o dominio mais amplo possível para f, a soma dos 5 menores elementos de A será:
a) 15
b) 18
c) 20
d) 22



Ps. é o meu primeiro post, estou tendo um pouco de dificuldades com os codigos, se algo estiver fora das regras ou codigos errados é só me falarem.

Primeiramente bem-vindo ao fórum! Faça bom uso...

Vamos lá quanto a questão:

Temos a seguinte função f(x) = \frac{x + 20}{x} e queremos encontrar valores que quando substituirmos x em \frac{x + 20}{x} encontremos um número pertencente a N, ou seja, um número natural 1, 2, 3, ...

Não é difícil porque iremos fazer a seguinte "jogada"... Ao invés de usar \frac{x + 20}{x} podemos escrever \frac{x}{x}+\frac{20}{x} e por consequencia 1+\frac{20}{x}.

Ou seja, 1+\frac{20}{x}=N onde N é um número inteiro. Para isso dar inteiro a fração tem que ser redutível, sendo assim temos que encontrar os x em que vamos dividir 20 e encontrar um número inteiro. Em outras palavras, quais são os 5 primeiros números que 20 é divisível?

Tente resolver agora.
A resposta certa é a letra d)
Qualquer dúvida informe aqui.
Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função

Mensagempor mahhfe » Sex Nov 13, 2009 19:06

Oi Molina, poxa, obrigada!
Consegui! Fiz de duas maneiras inimagináveis e nunca pensei nessa. Sabe com é, estou adentrando no mundo da matemática e aos poucos vou pegando o jeito. O meu problema maior é com a interpretaçao do problema, mas creio que esse é o maior problema da maioria das pessoas.
mahhfe
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 13, 2009 11:25
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D