• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função: conjunto

função: conjunto

Mensagempor Victor Gabriel » Qui Mai 09, 2013 19:21

Boa noite pessoal, se tiver algum que puder mim ajudar nesta questão ficarei grato.

questão: Se A é um conjunto com 3 elementos e B um conjunto com 11elementos, quantas funções f : A \rightarrow B existe ? Quantas delas são injetivas?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: função: conjunto

Mensagempor brunoiria » Sex Mai 10, 2013 01:14

ola Victor, está questão envolve o conceito de combinatória.
bom. assim vamos tentar simplificar A é um conjunto com 3 elementos qualquer por exemplo {a,b,c}
e B com 11, exemplo {1,2,3,4,....,11}.
a definição de função é
Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

diz-se que a função f de X em Y que relaciona cada elemento x em X , um único elemento y = f (x) em Y (de uma olhada em livros de matemática, tipo do iezzi ou do elon)
assim o elemento a pode se relacionar com qualquer número 1,2,3,4.....,11. apenas uma vez
exemplo;
1.   f(a)=1; f(b)= 3; f(c)=7
2.   f(a)=1; f(b)= 3; f(c)=1
3.   f(a)=5; f(b)= 5; f(c)=5
veja que em 2. e 3. apesar de repetir a imagem nenhum domínio se relaciona duas vezes.

Assim cada elemento de A pode se relacionar com qualquer um dos onze elementos de B

então existem 11^3 maneiras de expressar a função f: A\mapsto B.
Dê uma olhada na definição de injetiva e tente fazer. o principio é o mesmo.
boa sorte nos estudos
brunoiria
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 23, 2012 10:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic Mat
Andamento: cursando

Re: função: conjunto

Mensagempor Victor Gabriel » Sex Mai 10, 2013 02:19

Professor brunoiria olha se estou certo!

Se uma função f:A\rightarrow B é uma correspondência que a cada elemento a de A associa um único elemento de B, denotando por f(a).
Quantas dessas correspondência podem ser feita se A={a,b,c} e B={1,2,3,...,11}?
Logo existe 11³=1331 funções f:A\rightarrow B , as injetivas são 3!{C}_{(11,3)}=3!\frac{11!}{3!(11-3)}=990.

LOGO AS INJETIVAS SÃO 990.
Estou certo?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: função: conjunto

Mensagempor brunoiria » Sex Mai 10, 2013 13:35

correto :y:
brunoiria
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 23, 2012 10:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic Mat
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}