• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio raiz quadrada de x/x+1

Domínio raiz quadrada de x/x+1

Mensagempor virginia » Qui Abr 25, 2013 13:14

A questão \sqrt[2]{\frac{x}{x+1}} na resposta do livro é: (-infinito, -1) U [0,+infinito), não consegui chegar a essa resposta consegui encontrar apenas o -1, pois x+1#0, logo x#-1, porem como fica {\frac{x}{x+1}} > ou igual a zero??? eu achei x-x>=1. Como fica isso?
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio raiz quadrada de x/x+1

Mensagempor DanielFerreira » Qui Abr 25, 2013 17:54

Virgínia,
note que a equação está dentro da raiz, portanto, o denominador deverá ser maior que zero, e, não diferente. Veja o porquê:
Pelo raciocínio que empregou, podemos admitir que x = - 2, uma vez que, a restrição imposta foi apenas que x \neq 0. E isso não está correto! Como disse anteriormente, se o índice da raiz é par, então o radicando não pode ser negativo!

Por conseguinte, as duas condição para resolver o exercício...

Condição I:

x \geq 0


Condição II:

x + 1 > 0


Tente prosseguir, aguardo retorno!

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?