por Mtfera » Seg Dez 03, 2012 20:58
Essa questão

sendo essa raiz elevada a 4. Sou péssimo nessa matéria, preciso aprender os passos para resolver.
Tem essa outra também

Preciso aprender para resolver as outras e entregar o trabalho amanhã.
-
Mtfera
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Dez 03, 2012 20:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por DanielFerreira » Seg Dez 03, 2012 23:00
Mtfera,
seja bem-vinda!
![\\ \sqrt[4]{2^x} = 16 \\\\ 2^{\frac{x}{4}} = 2 \cdot 2 \cdot 2 \cdot 2 \\\\ 2^{\frac{x}{4}} = 2^4 \\\\ \textup{Igualando os expoentes, pois as bases sao iguais, fica:} \\\\ \frac{x}{4} = 4 \\\\ \textup{Multiplicando cruzado...} \\\\ x = 4 \cdot 4 \\\\ \boxed{x = 16} \\ \sqrt[4]{2^x} = 16 \\\\ 2^{\frac{x}{4}} = 2 \cdot 2 \cdot 2 \cdot 2 \\\\ 2^{\frac{x}{4}} = 2^4 \\\\ \textup{Igualando os expoentes, pois as bases sao iguais, fica:} \\\\ \frac{x}{4} = 4 \\\\ \textup{Multiplicando cruzado...} \\\\ x = 4 \cdot 4 \\\\ \boxed{x = 16}](/latexrender/pictures/46bdada36ed7e2c315e87faf549ee575.png)
Nota:
![\sqrt[b]{2^a} = 2^{\frac{a}{b}} \sqrt[b]{2^a} = 2^{\frac{a}{b}}](/latexrender/pictures/9caca8d1e8c66f865265dda244c37ce3.png)
Quanto a segunda, tente!
Caso não consiga, poste como tentou resolvê-la!
Até breve.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determine o valor do limite
por Cleyson007 » Sáb Abr 28, 2012 17:27
- 6 Respostas
- 2434 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 18:14
Cálculo: Limites, Derivadas e Integrais
-
- determine o valor de x para q se tenha
por weverton » Seg Nov 08, 2010 17:32
- 1 Respostas
- 2436 Exibições
- Última mensagem por davi_11

Qua Nov 24, 2010 13:03
Logaritmos
-
- (Calculo de trigonometria) Determine o valor de x+10
por andersontricordiano » Ter Dez 06, 2011 14:36
- 1 Respostas
- 1456 Exibições
- Última mensagem por MarceloFantini

Ter Dez 06, 2011 14:54
Trigonometria
-
- Determine o valor de L para que a função
por Ana Maria da Silva » Qui Mai 09, 2013 12:11
- 0 Respostas
- 1123 Exibições
- Última mensagem por Ana Maria da Silva

Qui Mai 09, 2013 12:11
Cálculo: Limites, Derivadas e Integrais
-
- (Sistema Lineares) Determine o valor do angulo X
por andersontricordiano » Sáb Nov 26, 2011 21:31
- 1 Respostas
- 1325 Exibições
- Última mensagem por MarceloFantini

Dom Nov 27, 2011 01:58
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.