por Tixa11 » Sáb Nov 10, 2012 12:43

Verdadeiro ou falso?
Como resolvo?
-
Tixa11
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Sáb Nov 10, 2012 12:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bioquimica
- Andamento: cursando
por MarceloFantini » Sáb Nov 10, 2012 13:39
Você pode usar L'Hospital?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Tixa11 » Dom Nov 11, 2012 12:57
MarceloFantini escreveu:Você pode usar L'Hospital?
Não sei o que é isso. Desculpe...
-
Tixa11
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Sáb Nov 10, 2012 12:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bioquimica
- Andamento: cursando
por e8group » Dom Nov 11, 2012 14:07
Eu pensei assim .
No primeiro limite multiplicando o numerador e denominador por

. Vamos obter ,
Já no segundo , fazendo a susbstituição

, segue que ,
Assim ,

.
Qualquer dúvida , post aí por favor .
OBS.: Por favor , se alguém ver algum erro quanto a definição , ficaria agradecido se postasse .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Tixa11 » Dom Nov 11, 2012 19:55
Muito obrigado pela ajuda (:
Só não entendi muito bem o segundo limite mas vou tentar perceber.
-
Tixa11
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Sáb Nov 10, 2012 12:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bioquimica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites]Limites com funções trigonométricas
por TuTa » Qui Jul 12, 2012 00:22
- 3 Respostas
- 1864 Exibições
- Última mensagem por e8group

Qui Jul 12, 2012 12:13
Cálculo: Limites, Derivadas e Integrais
-
- Funções e Limites
por matpet92 » Ter Jan 31, 2012 20:33
- 2 Respostas
- 1814 Exibições
- Última mensagem por matpet92

Ter Jan 31, 2012 21:45
Funções
-
- Limites de Funções vs Sucessões
por joaofonseca » Seg Mai 02, 2011 22:56
- 1 Respostas
- 2222 Exibições
- Última mensagem por LuizAquino

Seg Mai 02, 2011 23:09
Cálculo: Limites, Derivadas e Integrais
-
- [Limites de funções com raíz]
por yakini » Dom Fev 10, 2013 11:32
- 2 Respostas
- 1765 Exibições
- Última mensagem por yakini

Dom Fev 10, 2013 16:17
Cálculo: Limites, Derivadas e Integrais
-
- Limites de funcoes no infinito
por G-Schmitt-Jr » Sex Mai 30, 2014 12:19
- 1 Respostas
- 1408 Exibições
- Última mensagem por Janoca

Seg Jun 16, 2014 02:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.