• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função de 1 grau - Ajuda

Função de 1 grau - Ajuda

Mensagempor starolive » Seg Nov 05, 2012 11:35

não estou conseguindo se algum dos colegas do forum conseguir ...


A)sendo F(X)=(3x-4)/6 F:IR é IR,então calcule f -¹(X)

B) sejam as funções reais F(X)=4X-15 e G(X)=x²+2x-3 determine FOG e GOF

C) e resolver a inequação: -x²-7x+10>0

vlw
starolive
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Nov 05, 2012 11:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função de 1 grau - Ajuda

Mensagempor e8group » Seg Nov 05, 2012 12:21

Vou apenas dar as diretrizes , com isso reflita e tente concluir o exercício .


a)

Se f : A \rightarrow B , a inversa (talvez) satisfaz , f^{-1} : B \rightarrow A . A e B são subconjuntos . Neste caso especifico do seu exercício , A = \mathbb{R} e B = \mathbb{R} .

Em outras palavras para você determinar a função inversa de f , você precisar trocar " y" com " " x " e isolar "y" . Grosseiramente , o que era o dominio " x " virou a imagem "y" , isto é a inversa de uma função . A notação f^{-1} denota isso .


Vale ressaltar que omitir algumas informações , para não confundi você .


b)

Basta lembra que ,

f \circ g (x) =  f(g(x)) e g \circ f (x)  = g (f(x) ) .



Da mesma forma que vc calcula , por exemplo f(2) e g(2) , você obterá as composições de funções trocando " x " por f(x) , se você quer g(f(x)) o outro caso é semelhante a este .




Para estudar este assunto no youtube check aqui
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Função de 1 grau - Ajuda

Mensagempor starolive » Seg Nov 05, 2012 13:08

Amigo, então o modo de resolução eu sei, no caso da função inversa da composta e da inequação,o problema é na resolução que nao estou conseguindo concluir. se puser postar a resolução pra mim ver onde estou errando ficarei agradecido
starolive
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Nov 05, 2012 11:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função de 1 grau - Ajuda

Mensagempor e8group » Seg Nov 05, 2012 16:17

OK !


a)


Se , f(x) = \frac{3x-4}{6} .Então ,


\frac{2}{3}(3x +2)= f^{-1}(x) , Pois ,

f(x) = \frac{3x-4}{6}   \implies   6 f(x) = 3x - 4   \implies 2(3f(x)+2)= 3x - 4 + 4 \implies \frac{2}{3}(3(f(x) +2 ) = x   \\  \\    f(x)  \leftrightarrow x
 \implies \frac{2}{3}(3x +2)= f^{-1}(x)



b)


Se f(x) = 4x -15 . Logo , (f \circ g )(x) = f(g(x)) =  4(g(x)) - 15  .


MAs quem é g(x) ? Basta lembra que de acordo com o enunciado , g(x) = x^2 + 2x - 3 .

Substituindo na primeira relação , vc acha a composição de função .


Já , (g \circ f ) = g(f(x)) deixo para vc tentar .



c)


-x^2 - 7x + 10 > 0


Aq temos que achar valores que mantenha esta innequação verdadeira .


-x^2-7x+10 = 0  \iff   -(x + 7/2)^2 + 10 + \frac{49}{4} = 0 \iff  (x  +7/2)^2 = \frac{89}{4}  \iff  x = \begin{cases}x_1  = \frac{-7 - \sqrt{89}}{2}   \\ x_2 =  \frac{-7 + \sqrt{89}}{2}\end{cases}


Assim ,


-x^2 - 7x + 10  > 0


Quando ,
x \in \left(  \frac{-7 - \sqrt{89}}{2}  ,   \frac{-7 + \sqrt{89}}{2}\right) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?