por Jhenrique » Qui Set 13, 2012 02:30
Saudações caros estudantes!
Vou começar definindo 2 acepções para o termo função:
1) no sentido geral: conjunto de operações executadas por algo ou alguém.
2) no sentido matemático: uma grandeza y variando por causa da variação duma grandeza x
Pois bem, é certo afirmar que a Integração ou a Derivação duma função genérica f(x) é uma função no 2º sentido acima citado por mim, o matemático?
Creio que sim, porque:
seja y uma função f(x) qualquer
der(y) = y'
int(y) = Y
aplicamos a derivada e a integral numa função genérica como aplicamos a função seno e cosseno num ângulo qualquer... não é verdade!?
PS.: sendo y?¹ uma função inversa genérica, a melhor notação (sem colchetes) para denotar a sua derivada seria: y?¹' ou y'?¹ ?
Obg,
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por MarceloFantini » Qui Set 13, 2012 10:12
Uma função entre dois conjuntos é uma regra que associa cada elemento do conjunto domínio a um elemento do contradomínio. Eu pelo menos acredito que esta idéia de que uma função é uma grandeza variando devido á variação de outra limita seu pensamento, pois existem funções das mais diversas formas e isto atrapalharia sua interpretação.
Sobre sua pergunta, sim: derivadas e integrais de uma função são funções. Muitas vezes são tomadas inclusive como o ponto de partida delas: uma das definições de logaritmo é

, para tomar um exemplo simples.
aplicamos a derivada e a integral numa função genérica como aplicamos a função seno e cosseno num ângulo qualquer... não é verdade!?
Não tão genérica assim. Aplicamos derivadas em funções que sejam deriváveis e integrais em funções que sejam contínuas. São classes de funções bem restritas.
Sobre a notação, acredito que seja

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Diferenciação Logarítmica
por Man Utd » Dom Mai 26, 2013 16:02
- 3 Respostas
- 2406 Exibições
- Última mensagem por e8group

Dom Mai 26, 2013 19:00
Cálculo: Limites, Derivadas e Integrais
-
- integraçao de potencia e produtos de funçoes trigonometricas
por menino de ouro » Dom Nov 04, 2012 19:46
- 3 Respostas
- 1251 Exibições
- Última mensagem por MarceloFantini

Seg Nov 05, 2012 10:26
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por Partes] Constante de integração
por KleinIll » Dom Set 01, 2019 14:11
- 2 Respostas
- 5956 Exibições
- Última mensagem por KleinIll

Sex Set 06, 2019 18:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limites de Integração] Como achar os limites de integração?
por Miine_J » Sáb Nov 10, 2018 03:13
- 2 Respostas
- 19694 Exibições
- Última mensagem por Miine_J

Dom Nov 11, 2018 08:17
Cálculo: Limites, Derivadas e Integrais
-
- Integração
por Cleyson007 » Seg Out 29, 2012 19:33
- 6 Respostas
- 4235 Exibições
- Última mensagem por Cleyson007

Ter Out 30, 2012 10:31
Física
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.