por joaolage » Seg Mar 10, 2008 21:27
Não estou conseguindo resolver os problemas , por favor me ajude !
- . A demanda de um certo produto é D (p)=12.000 - 200p por mês quando o preço é p reais a unidade.
a. Esboce o gráfico dessa função de demanada;
b. Sabendo que o gasto mensal total num produto é a quandtia total que os consumidores gastam para adquirir um produto durante um mês, expresse gasto mensal total em função de p;
c. Esboce o gráfico da função de gasto mensal total;
d. Discuta o sgnificado econômico das raizes da função gasto mensal total;
e. use o gráfico do item (c) para estimar o preço para o qual o gasto mensal é máximo.
- . Uma empresa de ônibus adotou a seguinte pólítica de preços para grupos que desejam fretar um ônibus: grupo de 40 pessoas ou nemos pagam uma quantia de R$ 2.400,00 (40 vezes R$60,00). Nos grupos de 41 a 80 pessoas, o preço é de R$ 60,00 por pessoa menos 50 centavos para cade pessoa que exceder 40. Para grupos de mais de 80 pessoas,o preço é de R$ 50,00 por pessoa. Para qualquer caso há uma taxa fixa para reserva de disponibilidade de R$ 300,00. Expresse a receita da empresa de ônibus em função do tamanho do grupo e desenhe o gráfico relacionado.
- . O estoque E em função do tempo, ao ser iniciado, isto é, partindo do tempo zero, pode ser modelado como sendo E(t)=Qo - é o nivel inicial do estoque e a é a taxa de demanda uniforme pelo item estocado. Supondo que o estoque só se renova quando for inteiramente esgotado e ele sempre se renová de volta ao nivel Qo, encontre uma expressão geral para o nivel de estocagem ao longo do tempo En (t), onde n é ciclo de estocagem e n = 1, 2, 3 etc., como uma função linear por partes. Dicas utilize as propriedades de retas paralelas.
Grato,
João Duarte
-
joaolage
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Mar 10, 2008 19:45
- Área/Curso: Estudante / Trabaçhador
- Andamento: cursando
por admin » Seg Mar 10, 2008 21:43
Olá!
Acredito que este tópico ajudará você:
Pensando e esboçando gráficosviewtopic.php?f=72&t=150Entenda e siga os passos.
Caso tenha alguma dúvida específica, comente conosco e tentaremos ajudá-lo!
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Oferta e Demanda
por DaniAs » Qua Set 15, 2010 10:35
- 0 Respostas
- 6600 Exibições
- Última mensagem por DaniAs

Qua Set 15, 2010 10:35
Funções
-
- Demanda real
por meloser » Seg Jan 31, 2011 22:43
- 1 Respostas
- 3016 Exibições
- Última mensagem por LuizAquino

Ter Fev 01, 2011 09:23
Cálculo: Limites, Derivadas e Integrais
-
- Previsão de Demanda
por trenanc » Qui Fev 17, 2011 13:34
- 0 Respostas
- 2597 Exibições
- Última mensagem por trenanc

Qui Fev 17, 2011 13:34
Estatística
-
- função demanda
por ssousa3 » Dom Abr 03, 2011 20:55
- 1 Respostas
- 19877 Exibições
- Última mensagem por ssousa3

Seg Abr 04, 2011 14:30
Funções
-
- [Demanda e receita]
por camiscamila » Qui Mar 29, 2012 02:06
- 1 Respostas
- 5584 Exibições
- Última mensagem por LuizAquino

Qui Mar 29, 2012 13:04
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.