Mensagempor MarinheiroMat » Qua Mai 18, 2011 13:57
Uma fabrica de frascos destinados a produtos de conserva pretende o seguinte:
-> construir uma embalagem cilindrica com capacidade de 48? cm^3
-> A base inferior do cilindro do mesmo material da superficie lateral, que custa 2 euros por m^2
-> a base superior do cilindro de um material mais caro, que custa 3 euros por m^2
Supondo que não haverá perdas de material:
2.1 verifique que o custo de cada embalagem e dado, em euros, por:
C(r) = 0,0005?r^2 + 0,0192?/r sendo r o raio da base em cm.
2.2 Determine, com aproximação ás centesimas a altura e o raio da base do cilindro de modo a minimizar o custo do material gasto.
--------------------------------------------------------------------------------
Na primeira pergunta não sei como responder ja fiz o grafico na maquina calculadora mas acho que não é por ai
Na segunda pergunta não sei mesmo como fazer
Dêem me dicas para como fazer.
sfffffffffff
Alguem consegue chegar lá eu não


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.