• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Afim

Função Afim

Mensagempor Andrewo » Qua Mai 09, 2012 13:18

Aê galera, blza?

To com 2 questões que tão me encucando aqui.


1-(Puccamp) - O desmatamento no estado do Acre está avançando a uma taxa constante de 16 campos de futebol por hora.Num dado instante, a área devastada equivale a 261 760 campos de futebol.Sabendo-se que as dimensões médias de um campo de futebol são : 95m por 68 m, ao fim de 360 dias, o total de área devastada, em quilômetros quadrados será:


O que fiz: Área de um campo = 6 460

6460*14 (campos por hora) = 90 440
90440 * 24 (h de 1 dia)= 2 170 560

ou seja, em 1 dia, são devastados 2 170 560 metros

2 170 560*360 = metros devastados em 360 dias, que dá um número absurdamente grande, ou seja, não sei resolver essa questão




2 - Ufpe - Seja f(n) = \frac{{n}^{4}-1}{{n}^{3}+{n}^{2}+n+1}, onde n é um número inteiro . Analise as afirmativas a seguir


( )F(n) é um número inteiro qualquer que seja n
( )f(n) maior que 0 se n maior que 1.
( )Existe n tal que f(n) é um número racional não inteiro.
( )Se m é menor que n então f(m) é menor que f(n)
( ) F(n) é menor que n para todo n.


Se dessem uma explicação a cada afirmativa seria show,




:y: :y: :y: :y:
Avatar do usuário
Andrewo
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Qui Jan 12, 2012 11:22
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função Afim

Mensagempor MarceloFantini » Qua Mai 09, 2012 21:56

Andrewo, por favor leia as regras do fórum. Limite-se a uma questão por tópico e use LaTeX para redigir suas equações.

Para a primeira, converta metros para kilômetros, logo 98 \, m = 0,098 \, km e 68 \, m = 0,068 \, km. Equivalentemente, pegue o resultado que você encontrou e multiplique por 10^{-6} para determinar o valor em kilometros quadrados.

Para a segunda, use que n^4 -1 = (n-1)(n^3 +n^2 + n + 1) e efetue a divisão. Avalie cada afirmação a partir disso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Afim

Mensagempor Andrewo » Sex Mai 11, 2012 12:48

MarceloFantini escreveu:Andrewo, por favor leia as regras do fórum. Limite-se a uma questão por tópico e use LaTeX para redigir suas equações.

Para a primeira, converta metros para kilômetros, logo 98 \, m = 0,098 \, km e 68 \, m = 0,068 \, km. Equivalentemente, pegue o resultado que você encontrou e multiplique por 10^{-6} para determinar o valor em kilometros quadrados.


Bom, não sei se eu fiz certo, mas o resultado também não bateu.Eu fiz as multiplicações com os metros convertidos em km e dpois multipliquei pelo valor que vc disse pra converter em quilômetros quadrados e não bate o resultado.


Só pra constar; o resultado pelo gabarito é 2584 {km}^{2}
Avatar do usuário
Andrewo
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Qui Jan 12, 2012 11:22
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.