• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cefet-mg

cefet-mg

Mensagempor Thulio_Parazi » Qui Mai 03, 2012 14:06

QUESTÃO 19
A inversa da função f : R ? R+ com f(x) = x² é a função g : R+ ? R
com g(x) = ?x,
PORQUE
a função f : X ? Y é a inversa de g : Y ? X se g o f(x) = x para todo
x ? X e f o g(y) = y para todo y ? Y.
Considerando o esquema proposição-razão acima, pode-se inferir
que
a) as duas são falsas.
b) a primeira é falsa e a segunda é verdadeira.
c) a primeira é verdadeira e a segunda é falsa.
d) as duas são verdadeiras e a segunda justifica a primeira.
e) as duas são verdadeiras e a segunda não justifica a primeira.

Como faço para resolver esse exercício ? Não sube nem por onde começar a resolver.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg

Mensagempor MarceloFantini » Dom Mai 06, 2012 00:44

Primeiro é necessário conhecer a definição de função inversa, que é idêntica ao que a proposição diz. Portanto, ela é verdadeira. Agora você precisa entender como ela se aplica ao caso particular que ele cita, que é falso. Note que para que g(f(x)) isto pode falhar. Tome x= -1. Então g(f(-1)) = g((-1)^2) = g(1) = 1 \neq -1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}