• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Exponencial

Função Exponencial

Mensagempor Aline » Seg Jun 29, 2009 18:59

Boa tarde, preciso de uma ajudinha nessa questão de função exponencial....
Suponha que após t dias de observação, a população de uma cultura de bactérias é dada pela expressão P(t)= P 0.2^0,05.t na qual P 0 é a população inicial da cultura (instante t=0). Quantos dias serão necessários para que a população dessa cultura seja o quádruplo da inicial?
Agradeço pelas dúvidas sanadas até o presente momento, vocês tem me ajudado muitooo!!!
Aline
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Abr 22, 2009 18:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Função Exponencial

Mensagempor Molina » Ter Jun 30, 2009 00:27

Aline escreveu:Boa tarde, preciso de uma ajudinha nessa questão de função exponencial....
Suponha que após t dias de observação, a população de uma cultura de bactérias é dada pela expressão P(t)= P 0.2^0,05.t na qual P 0 é a população inicial da cultura (instante t=0). Quantos dias serão necessários para que a população dessa cultura seja o quádruplo da inicial?
Agradeço pelas dúvidas sanadas até o presente momento, vocês tem me ajudado muitooo!!!


Boa noite, Aline.

Confirme, por favor, a expressão da cultura de bactérias.
Nao entendi o que seria aquele P do lado direito da igualdade...
Outra duvida é quanto a pontência: 0,05 estaria sendo elevado ou 0,05*t?

Tente escrever a expressao usando o LaTeX, ok?

Aguardo sua resposta para lhe auxiliar.

Abraços, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função Exponencial

Mensagempor Aline » Qua Jul 01, 2009 22:15

Boa noite Diego, o P do lado direito da igualdade seria a população no momento inicial,e a fórmula é a seguinte P(t)=P0.0,2^0,05*t, é 0,2 elevado a 0,05*t, não consigo escreve-la utilizando o LateX...
eu tentei resolver de uma forma, só não sei se é a mas correta e se o resulado é esse mesmo.
Fiz assim:
Substitui um valor qualquer para as bactérias no momento inicial, e seu quadruplo conforme pede o exercício, o resultado de t é
igual a 40, não sei se está correto, meu raciocinio está certo?, ou tem uma forma mais correta de resolver esse tipo de exercício?
Brigadoo por enquanto
Bjos
Aline
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Abr 22, 2009 18:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Função Exponencial

Mensagempor Cleyson007 » Qua Jul 01, 2009 22:59

Boa noite Aline!

A função exponencial é essa: P(t)={P}_{0}({0,2})^{0,05t}?

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?