• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo I - Função do 1 Grau

Cálculo I - Função do 1 Grau

Mensagempor jamesramos » Dom Mar 04, 2012 22:49

Esboce o Gráfico e dê o Domínio desta Função do 1. Grau:

f(x)= -x+1
jamesramos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Produção
Andamento: cursando

Re: Cálculo I - Função do 1 Grau

Mensagempor MarceloFantini » Seg Mar 05, 2012 01:41

James, quais foram suas dificuldades?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cálculo I - Função do 1 Grau

Mensagempor jamesramos » Seg Mar 05, 2012 07:35

MarceloFantini escreveu:James, quais foram suas dificuldades?


Eu não consigo resolver a função e esbocar o gráfico. Meu valor deu errado!
jamesramos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Produção
Andamento: cursando

Re: Cálculo I - Função do 1 Grau

Mensagempor MarceloFantini » Seg Mar 05, 2012 07:51

James, recomendo que você estude os vídeos do Nerckie e tente resolver a questão novamente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cálculo I - Função do 1 Grau

Mensagempor jamesramos » Ter Mar 06, 2012 18:51

Olá. Desculpe vir só responder agora. Mas eu consegui responder esta. Eu usei os Números Reais (-1,1) e encontrei o valor das ordenadas , assim jogando no Gráfico. Foi fácil!
jamesramos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Produção
Andamento: cursando

Re: Cálculo I - Função do 1 Grau

Mensagempor MarceloFantini » Ter Mar 06, 2012 19:18

Apenas para confirmar que entendeu, como ficou o gráfico?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}