por Ana_Rodrigues » Ter Jan 24, 2012 23:42
Nesta questão deve-se resolver a equação em função de x
Teve uma equação que eu não consegui resolver sem antes ter olhado a resposta no gabarito e te-la desmontado de trás para frente
lnx +ln(x-1)=1
Resposta
![\frac{1}{2}\left(1+\sqrt[]{1+4e} \right) \frac{1}{2}\left(1+\sqrt[]{1+4e} \right)](/latexrender/pictures/d0f1f618f595c54d9e155b6a586d36ba.png)
A minha equação só chegava até aqui

Resolvendo a resposta de trás pra frente eu percebo que o primeiro passo foi multiplicar por 4 os membros da equação
![2x=1+\sqrt[]{1+4e} 2x=1+\sqrt[]{1+4e}](/latexrender/pictures/9a4c1e5bd7d9c16319accad6b8ffa4cb.png)
![2x-1=\sqrt[]{1+4e} 2x-1=\sqrt[]{1+4e}](/latexrender/pictures/cfa8e77731de655ce1e97dbae30c1852.png)




Bom, quero saber porque esse foi o primeiro passo. Depois que a conta ta pronta eu vi lógica mas antes disso eu não entendi por que. Como saber disso. Alguém pode resolver esta questão explicando cada linha na ordem correta? Tipo tinha que achar algum número que multiplicado com a equação fosse possível formar o quadrado perfeito?
Agradeço desde já a quem me ajudar a entender!
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ant_dii » Qua Jan 25, 2012 02:28
Pra começar, lembre-se da propriedade de logaritmos, onde:

No seu caso,
![\ln x + \ln (x-1) = \ln [x(x-1)]=\ln(x^2-x) \ln x + \ln (x-1) = \ln [x(x-1)]=\ln(x^2-x)](/latexrender/pictures/a7b5be83c9810910969cc35547478f25.png)
Como você esta tentando escrever para x temos que

Resolvendo por Bhaskara, teremos

Mas como não temos logaritmo natural de números negativos e

, devemos somente considerar o valor positivo, ou seja,

Espero ter ajudado... Té mais
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Ana_Rodrigues » Qua Jan 25, 2012 13:21
Nossa, era tão fácil, rsrs
enfim, muito obrigada!
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Logaritmos] Dúvida em um exercicio envolvendo logaritmos.
por LuizGustavo » Sex Jun 01, 2012 22:48
- 2 Respostas
- 5043 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:38
Logaritmos
-
- [Logaritmos] equação com logaritmos
por natanaelvoss » Sex Dez 07, 2012 20:25
- 2 Respostas
- 6670 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:40
Logaritmos
-
- logaritmos
por celisecorrea » Ter Set 30, 2008 17:17
- 2 Respostas
- 3362 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:38
Logaritmos
-
- LOGARITMOS
por DESESPERADA » Qua Dez 30, 2009 13:25
- 2 Respostas
- 3132 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:37
Matemática Financeira
-
- Logaritmos
por cristina » Qua Jun 02, 2010 10:07
- 1 Respostas
- 2422 Exibições
- Última mensagem por Cleyson007

Qua Jun 02, 2010 13:30
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.