• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida nessa de conjunto

Dúvida nessa de conjunto

Mensagempor igorcalfe » Qua Dez 28, 2011 19:16

11.png

Eu achei a resp e, mas o livro fala que é b, alguem pode me explicar?
igorcalfe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Dom Out 17, 2010 10:39
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida nessa de conjunto

Mensagempor igorcalfe » Qua Dez 28, 2011 19:18

¬¬ , n verdade eu achei a letra d de resposta rsrs
igorcalfe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Dom Out 17, 2010 10:39
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida nessa de conjunto

Mensagempor fraol » Qua Dez 28, 2011 22:01

Olá Igor,

Vou comentar os itens:

a) Falso: Não pode ser S pois o conjunto resultante não conteria elementos de A.

b) Verdadeiro: A intersecção pedida conterá somente elementos de S - B ( definição de complementar ).

c) Falso: Pelo explanado no item b).

d) Falso: O complementar de A contém o complementar de B.

e) Falso: Ver o item b).

E aí o que você acha?

Até mais,
Francisco.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}