por neo_quimica » Dom Out 30, 2011 12:22
Pessoal,
alguem sabe uma função com infinitos pontos em a, lim f(x)=+

, em cada intervalo (n,n+1) n pertence aos números reais.
x-a
-
neo_quimica
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Out 29, 2011 23:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [2º Axioma de Ordem] não prova infinitos pontos em reta
por Luiz Augusto Prado » Sex Mar 09, 2012 01:15
- 1 Respostas
- 2249 Exibições
- Última mensagem por Luiz Augusto Prado

Sáb Mar 10, 2012 01:20
Geometria Plana
-
- [Funções] Como encontrar f(x) tendo pontos x e y?
por Maschio » Seg Out 08, 2012 13:17
- 6 Respostas
- 5308 Exibições
- Última mensagem por Maschio

Ter Out 09, 2012 12:33
Funções
-
- limites infinitos
por oleve » Qua Jan 21, 2009 18:15
- 1 Respostas
- 2936 Exibições
- Última mensagem por Sandra Piedade

Sáb Jan 24, 2009 22:30
Cálculo: Limites, Derivadas e Integrais
-
- Limites infinitos
por Sobreira » Sáb Out 13, 2012 00:07
- 7 Respostas
- 4270 Exibições
- Última mensagem por MarceloFantini

Ter Out 30, 2012 09:07
Cálculo: Limites, Derivadas e Integrais
-
- Limites Infinitos. Ajuda
por valeuleo » Qua Jun 22, 2011 12:39
- 4 Respostas
- 2930 Exibições
- Última mensagem por renatav

Dom Jun 26, 2011 22:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.