• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função exponencial e logaritmica,me ajude!

função exponencial e logaritmica,me ajude!

Mensagempor [mariafernanda] » Qui Out 13, 2011 21:44

Uma maquina copiadora apos a compra tem seu valor depreciado a uma taxa de 11,5% ao ano.Sabendo que o valor pode ser expresso por uma função exponencial e que o valor na compra é de 68.500.
1-Obtenha o valor V como função dos anos apos a compra da maquina copiadora ,isto é V=f(x).
2-Obtenha o valor da maquina copiadora apos 1,5,e 10 anos da compra.
3-Esboce o grafico de V(X).
4-Apos quanto tempo o valor da maquina será a metade do valor inicial?
[mariafernanda]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Set 28, 2011 00:03
Formação Escolar: GRADUAÇÃO
Área/Curso: recursos humanos
Andamento: cursando

Re: função exponencial e logaritmica,me ajude!

Mensagempor TheoFerraz » Sex Out 14, 2011 14:40

O que acontece ai é que o valor da maquina é multiplicado por um fator a cada ano que se passa.

primeiro ano : V = {V}_{inicial} \times \frac{11.5}{100}

segundo ano : V = {V}_{inicial} \times \frac{11.5}{100} \times \frac{11.5}{100} = {V}_{inicial} \times {\left( \frac{11.5}{100} \right)}^{2}

terceiro : V = {V}_{inicial} \times \frac{11.5}{100} \times \frac{11.5}{100} \times \frac{11.5}{100} = {V}_{inicial} \times {\left( \frac{11.5}{100} \right)}^{3}

Percebeu a função exponencial ? o que temos é o Valor, em função do numero de anos passados! V(x)

V(\chi) =   {V}_{inicial} \times {\left( \frac{11.5}{100} \right)}^{\chi}

Bom, agora é facil. se voce quer o valor que ela terá depois de um numero X de anos é só vc jogar lá e obter o valor. e se vc quer quando ela terá o valor inicial iguale a V(x) ao valor da metade! voce vai obter um logaritimo. Divirta-se =)
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.