• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[função logarítimica] ajuda?

[função logarítimica] ajuda?

Mensagempor danielleecb » Seg Set 26, 2011 18:09

Oi pessoal, não consigo encontrar de modo algum a resposta desta questão. Já fiz de mil modos...

"Considerando-se as funções reais f(x) = 2^(x+1) (uma observação, é 2 elevado a (x+1)... nao consegui fazer isso )e g(x) = log2 (x-4), é correto afirmar:
(01) A equação (tex) gof(x) = 0 (/tex) possui uma única raiz igual a log2 (5/2)."

A afirmativa é verdadeira, questão estilo UFBA... A propósito, não achei em canto nenhum como colocar o 2 na base do log... ou seja o dois é a base e o que está entre parenteses, o logaritmando.
A primeira vez que tentei fiz de um modo completamente errado... A segunda, achei que 2^x = 5/2 mas essa, obviamente não é a resposta :X
Ajuda? :D

p.s.: desculpem os erros de formatação com o LaTex , sou nova aqui e nao encontrei nos fóruns as formatações desejadas.
danielleecb
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Set 26, 2011 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vestibular
Andamento: cursando

Re: [função logarítimica] ajuda?

Mensagempor MarceloFantini » Seg Set 26, 2011 20:56

Daniel, para escrever o código use isto:

Código: Selecionar todos
2^{x+1}


e sairá: 2^{x+1}. Para escrever subscrito:

Código: Selecionar todos
\log_2 (x-4)


e sairá: \log_2 (x-4). Sobre a questão, vamos analisar: encontrando a composta:

(g \circ f)(x) = g(f(x)) = \log_2 (f(x)-4) = \log_2 (2^{x+1} -4)

Igualando a zero para encontrar raízes:

\log_2 (2^{x+1} -4) = 0 \implies 2^{x+1} -4 = 1 \implies 2^x \cdot 2 = 5 \implies 2^x = \frac{5}{2}

Usei a propriedade que a^{b+c} = a^b \cdot a^c. Aplicando o logaritmo na base 2 dos dois lados:

\log_2 2^x = x = \log_2 \frac{5}{2}

Ou seja, você ficou a um passo da solução. Faltou aplicar logaritmo na base 2 mais uma vez.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [função logarítimica] ajuda?

Mensagempor danielleecb » Qui Set 29, 2011 16:03

poxa, obrigada mesmo :)
danielleecb
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Set 26, 2011 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vestibular
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.