• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funçoes.

Funçoes.

Mensagempor 380625 » Qui Set 15, 2011 03:51

Tenho a seguinte proposição:

Seja f uma função periodica de período p então:

f(\alpha x)\ \alpha\neq 0 é periodica de período p\\alpha.

Quando vou provar o que faço:
1 - Defino h(x) = f(\alpha x) e assim temos que

Dh = { x \in\Re|\alpha x \in Df }

Não consigo entender o porque \alpha x \in Df.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Funçoes.

Mensagempor LuizAquino » Qui Set 15, 2011 11:01

380625 escreveu:1 - Defino h(x) = f(\alpha x) e assim temos que

Dh = { x \in\Re|\alpha x \in Df }

Não consigo entender o porque \alpha x \in Df.


É necessário que \alpha x esteja no domínio de f, caso contrário não seria possível calcular h(x).

Vejamos um exemplo. Considere a função f(x) = \textrm{tg}\ x . Como você deve saber, x = \frac{\pi}{2} não faz parte o domínio de f (se você não se recorda disso, então faça uma pequena revisão sobre a função tangente).

Considere que você tenha definido a função h(x) = f(3x). Note que para x = \frac{\pi}{6} não podemos calcular o valor de h, pois temos h\left(\frac{\pi}{6}\right)=f\left(\frac{3\pi}{6}\right) = f\left(\frac{\pi}{2}\right), entretanto como vimos antes a função f não está definida para esse valor.

Conclusão: o valor x está no domínio de h apenas se o valor 3x estiver no domínio de f.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.