• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Log - Tenso

Função Log - Tenso

Mensagempor jamiel » Qua Jun 22, 2011 15:49

Sabendo que log(2) = m, log(3) = n,log(5) = p, calcule os logaritmos abaixo, em função de m, n e p:

a) log(30) 

Re: log(60) - m

b) log(72) 

Re: log(144) - m

c) log(2700)

Re:log(5400) - m

d) log(2025)

Re:log(4050) - m

e) log(\frac{10}{9})

\left(\frac{10}{9} \right)*2 = \left(\frac{20}{9} \right)

Re:\left(\frac{20}{9} \right) - m \right)


f)

log(\sqrt[4]{\frac{1944}{125}})

Re:\left(log(\sqrt[4]{\frac{1944}{125}})*2 \right)=\left(log(\frac{\frac{1944}{125}}{2} \right)

\left(log(\frac{\frac{1944}{125}}{2}) - m\right)


Eu resolvi do meu jeito, mas não estou conseguindo entender a resolução do livro. Alguém pode me ajudar?

Gabarito do livro:

a) m+n+p
b) 3m+2n
c) 2m+3n+2p
d) 4n+2p
e) m+p-2n
f) (3m+5n-3p)/4
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Log - Tenso

Mensagempor LuizAquino » Qua Jun 22, 2011 16:00

Primeiro, você tem que escrever o logaritmando como o resultado de operações de produto ou divisão entre 2, 3 ou 5. Em seguida, basta utilizar as propriedades dos logaritmos.

Por exemplo:

a) \log 30 = \log 2\cdot 3\cdot 5 = \log 2 + \log 3 + \log 5 = m + n + p .

(...)

e) \log \frac{10}{9} = \log \frac{2\cdot 5}{3^2} = \log 2 + \log 5 - 2\log 3 = m + p - 2n .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função Log - Tenso

Mensagempor jamiel » Qua Jun 22, 2011 17:17

rsrsrsr
A maneira q eu resolvi foi muito louca, mas deu o resultado também.

Entendi o q vc quis dizer, fui tirando m.m.c e encontrando quantas vezes a letras se encaixariam. Putz! Valeu mesmo, cara. Vou tentar fazer aquela q tem raiz agora!


flw ...
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}