• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida na Resolução de uma Função

Dúvida na Resolução de uma Função

Mensagempor brunnomaia » Dom Mar 06, 2011 11:07

Pessoal sou novo no fórum e este é meu primeiro tópico, desculpe se o tópico estiver no local errado.

Eu tenho 32 anos e estou querendo depois de velho tentar vestibular para Engenharia Civil, O fato é que estou com algumas apostilas de cursinho fazendo exercícios e esbarrei logo de cara na questão abaixo:

O fato é que a anos eu não vejo matemática então não sei nem por onde começar..

Eu tenho o resultado porém não consigo chegar nele, até imagino que seja bem simples mas minha cabeça não consegue puxar pela memória o que aprendi a anos atrás.
Anexos
Equação.JPG
Equação.JPG (5.77 KiB) Exibido 1691 vezes
brunnomaia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 06, 2011 10:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida na Resolução de uma Função

Mensagempor LuizAquino » Dom Mar 06, 2011 11:40

Você quer calcular \frac{1}{m}.

Portanto, você quer o valor de \frac{1}{-2 + \sqrt{\frac{a^2}{b^2} + \frac{b^2}{a^2}  + 2}} .

Primeiro, vamos simplificar um pouco essa raiz.
\frac{1}{-2 + \sqrt{\frac{a^2}{b^2} + \frac{b^2}{a^2}  + 2}} = \frac{1}{-2 + \sqrt{\frac{a^4+b^4+2a^2b^2}{a^2b^2}}}

Usando o produto notável (x+y)^2=x^2+2xy+y^2, nós temos que:

= \frac{1}{-2 + \sqrt{\frac{(a^2+b^2)^2}{(ab)^2} } }

Como a e b são números positivos, podemos efetuar a simplificação entre a raiz quadrada e a potência 2.

= \frac{1}{-2 + \frac{a^2+b^2}{ab}}

= \frac{1}{\frac{-2ab + a^2 +b^2}{ab}}

Usando o produto notável (x-y)^2=x^2-2xy+y^2, temos que:

= \frac{1}{\frac{(a-b)^2}{ab}}

= \frac{ab}{(a-b)^2}

Agora, basta substituir os valores para a e b:
= \frac{0,998\cdot 1}{(0,998 - 1)^2} = 249.500

Sugestão
Acredito que o tópico a seguir deva lhe interessar:
Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida na Resolução de uma Função

Mensagempor brunnomaia » Dom Mar 06, 2011 11:53

Muito Obrigado!

Eu estava tentando simplificar desde o começo substituindo o b por 1 , não lembrava dos produtos notáveis!
brunnomaia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 06, 2011 10:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?