• Anúncio Global
    Respostas
    Exibições
    Última mensagem

caracterizar funções

caracterizar funções

Mensagempor helenasilva » Qua Jan 26, 2011 07:45

Outra questão é a seguinte:
O que se prentende num exercicio que pede para caracterizar as funções??
aparece : Considera as funções reais de variável f(x)=x^2-1 e g(x)=1/x caracteriza as funções:
a) f+g
b) f x g
c) f/g
Não entendo que se pretende com caracteriza as funções!! Na 1ª chegei ate (f+g)= (x^3-x+1)/x agora não sei como caracterizar las podem me ajudar?? URGENTEMENTE..
helenasilva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 24, 2011 17:57
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: caracterizar funções

Mensagempor Molina » Qua Jan 26, 2011 15:13

Boa tarde.

Tem alguma coisa a ver com o assunto que você está estudando de funções.

Talvez se são injetivas, sobrejetivas ou bijetivas..
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: caracterizar funções

Mensagempor LuizAquino » Qua Jan 26, 2011 15:47

Olá Pessoal,

Dependendo do contexto, "caracterizar a função" pode significar você indicar a sua lei de formação. Por exemplo, considerando que f(x)=x^2-1 e g(x)=\frac{1}{x}, temos que a caracterização de f+g será (f+g)(x) = \frac{x^3 -x + 1}{x}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: caracterizar funções

Mensagempor helenasilva » Qua Jan 26, 2011 18:20

Entao na alínea b) ficaria: (f×g)=(x^2-1)(1/x)
(f×g)= x^2+x^3-1-x ??
É só isso que é caracterizar?
helenasilva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 24, 2011 17:57
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: caracterizar funções

Mensagempor LuizAquino » Qua Jan 26, 2011 19:33

Acredito que sim. Entretanto, note que se f(x)=x^2-1 e g(x)=\frac{1}{x}, então:
(f\cdot g)(x) = \frac{x^2-1}{x}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: caracterizar funções

Mensagempor helenasilva » Qui Jan 27, 2011 18:51

ok obrigado pela resposta e agora percebo melhor o que e caracterizar funções..
helenasilva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 24, 2011 17:57
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.