• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema da torneira

Problema da torneira

Mensagempor Lorettto » Seg Dez 13, 2010 01:34

Como faz esse ? Uma torneira enche um depósito d'água em 1/14 da hora enquanto uma válvula pode esvaziá-la em 1/19 da hora. Trabalhando juntas, em quanto tempo o líquido contido no depósito atingirá seus 5//6 ?
Lorettto
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Nov 27, 2010 01:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Problema da torneira

Mensagempor PedroSantos » Seg Dez 13, 2010 04:05

Vejamos, a torneira enche o depósito e a valvula esvazia-o.Logo

\frac{1}{14}-\frac{1}{19}

Pode-se verificar que \frac{1}{14} é maior que \frac{1}{19} . Conclui-se que por cada unidade de tempo o depósito enche na diferença entre a torneira e a valvula.Seja n a quantidade de tempo.

n(\frac{1}{14}-\frac{1}{19})=\frac{5}{6}


Julgo que é assim, pois (conforme o enunciado) a torneira enche em 1/14 de hora (4 min 17seg) e a valvula esvazia em 1/19 de hora (3 min 10seg). Nesta perspectiva a valvula esvazia mais depressa do que a torneira enche e assim o deposito nunca chegaria a estar cheio!
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Problema da torneira

Mensagempor Lorettto » Seg Dez 13, 2010 14:33

Obrigado....mas eu já tinha conseguido a resolução dele bem depois que postei aqui. Obrigado assim mesmo pela força, abraço !! ;)
Lorettto
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Nov 27, 2010 01:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59