por simas4387 » Qua Nov 24, 2010 16:40
Alguem poderia ajudar a resolver essa questão por favor?
A pressão atmosférica, P, é frequentemente modelada via funções exponenciais. A pressão ao nível do mar é de 1013 milibares e sofre um decréscimo de 14% a cada quilometro acima do nível do mar.
Pede-se
a) Encontre a expressão que nos fornece a pressão P de acordo com a altura (em Km) acima do nível do mar.
b) Qual é a expressão atmosférica a 2km acima do nível do mar? E a 10 km?
tentei resolver da seguinte forma
a) p (h) = P0
quando h = 0 vc tem 1013.10-³
quando h = 1 vc tem 0,86 P0
quando h = 2 vc tem p 0,86 (0,86 P0)
então P (h) = 0,86 . h 1013.10-³
para encontrar a expressão
agora para a letra b eu ainda não consegui solução, poderiamos socializar a questão
-
simas4387
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 24, 2010 16:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por simas4387 » Sex Dez 03, 2010 18:46
Consegui realizar dessa forma, infelizmente ninguem compartilhou mas a partir daqui gostaria que pudessem dar seu parecer Obrigado a todos
Resolução:
letra a)
P (h) = 1013 . (0,86)k = ou seja 86/100 = 0,86
P(h) = 1013.(0,86)² = 0,86. onde k representa a altura em km do nível do mar.
letra b)
(b) Qual é a pressão atmosférica a 2 km acima do nível do mar?
E a 10 km?
Resolução:
Quando 1 km você tem P 0,86
Quando 2 km você tem P (0,86)² = 1013 . (0,7396) = 749,21 milibares
Quando 10 km você tem P (0,86)10 = 1013 . ( 0,2213014) = 224,17 milibares
-
simas4387
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 24, 2010 16:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Funções Exponenciais]
por nicolascalcagnoto » Qua Set 07, 2011 20:29
- 21 Respostas
- 12470 Exibições
- Última mensagem por MarceloFantini

Qui Set 15, 2011 16:00
Funções
-
- [Funções Exponenciais]
por nicolaspsy » Ter Set 20, 2011 02:05
- 1 Respostas
- 1683 Exibições
- Última mensagem por MarceloFantini

Qua Set 21, 2011 21:42
Funções
-
- Funcoes exponenciais
por Petrincha » Dom Jan 15, 2012 19:51
- 8 Respostas
- 4606 Exibições
- Última mensagem por Petrincha

Dom Jan 15, 2012 20:51
Funções
-
- [Funções exponenciais] Exercícios
por Texas » Qui Set 22, 2011 16:34
- 3 Respostas
- 2059 Exibições
- Última mensagem por MarceloFantini

Qui Set 22, 2011 19:23
Funções
-
- Derivadas de funções Exponenciais
por Ana Maria da Silva » Dom Jun 30, 2013 13:33
- 3 Respostas
- 3856 Exibições
- Última mensagem por Molina

Sex Jul 12, 2013 22:27
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.