• Anúncio Global
    Respostas
    Exibições
    Última mensagem

potenciação

potenciação

Mensagempor anneliesero » Ter Set 25, 2012 19:29

Boa noite!!

vocês podem me ajudar?

(UFSM) Números que assustam:
* 5,68 bilhões de pessoas vivem hoje no planeta.
* 5,7 bilhões de pessoas eram estimadas para viver no planeta hoje.
* 90 milhões nascem a cada ano.
* 800 milhões passam fome.
* 8,5 é a média de filhos por mulher em Ruanda.
* 1,4% da renda mundial está nas mãos dos 20% mais pobres.
* 35 milhões de pessoas migraram do hemisfério Sul para o Norte nas últimas três décadas. (Fonte: ONU)

De acordo com o texto, os números que representam a quantidade de pessoas que vivem no planeta, nasce a cada ano e passa fome são, respectivamente:

a) 568 . 109; 9 . 106; 8 . 106
b) 5,68 . 106; 9 . 106; 8 . 106
c) 568 . 107; 9 . 107; 80 . 107
d) 56,8 . 109; 90 . 109; 8 . 109
e) 568 . 108; 90 . 106; 80 . 106
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: potenciação

Mensagempor MarceloFantini » Ter Set 25, 2012 20:38

Prezada Anne,

Por favor atente para as Regras do Fórum, em especial a regra número 2.

Seu tópico não deverá ser respondido até estar de acordo com as regras.

Atenciosamente,
Equipe de Moderadores.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}