Olá. Estava fazendo um exercício de Verdadeiro ou Falso, e fiquei em dúvida em um item.
'A soma de dois números irracionais pode ser racional.' Pensei que era falso, mas a resposta diz ser verdadeiro.
Fiquei um tempo tentando, mas não consigo demonstrar isso (nem pelo método direto nem indireto). Se alguém puder, agradeço.



![(1 - \sqrt[]{2}) + \sqrt[]{2} = 1 (1 - \sqrt[]{2}) + \sqrt[]{2} = 1](/latexrender/pictures/73ab39d5f4990b9541bf51cba9ec6f28.png)

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)